986 resultados para SIMILARITIES
Resumo:
How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.
Resumo:
This paper describes the design of a self~organizing, hierarchical neural network model of unsupervised serial learning. The model learns to recognize, store, and recall sequences of unitized patterns, using either short-term memory (STM) or both STM and long-term memory (LTM) mechanisms. Timing information is learned and recall {both from STM and from LTM) is performed with a learned rhythmical structure. The network, bearing similarities with ART (Carpenter & Grossberg 1987a), learns to map temporal sequences to unitized patterns, which makes it suitable for hierarchical operation. It is therefore capable of self-organizing codes for sequences of sequences. The capacity is only limited by the number of nodes provided. Selected simulation results are reported to illustrate system properties.
Resumo:
Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2, which is probably orchestrated by a number of membrane stress proteins and involves D-alanylation of membrane lipoteichoic acids, restoration of the physiological proton motive force disrupted following bacteriophage infection, and energy conservation. Sequencing of the eight plasmids of L. lactis subsp. cremoris DPC3758 from raw milk cheese revealed three anti-phage restriction/modification (R/M) systems, immunity/resistance to nisin, lacticin 481, cadmium and copper, and six conjugative/mobilization regions. A food-grade derivative strain with enhanced bacteriophage resistance was generated via stacking of R/M plasmids. Sequencing and functional analysis of the four plasmids of L. lactis subsp. lactis biovar. diacetylactis DPC3901 from raw milk cheese revealed genes novel to Lactococcus and typical of bacteria associated with plants, in addition to genes associated with plant-derived lactococcal strains. The functionality of a novel high-affinity regulated system for cobalt uptake was demonstrated. The bacteriophage resistant and bacteriocin-producing plasmid pMRC01 places a metabolic burden on lactococcal hosts resulting in lowered growth rates and increased cell permeability and autolysis. The magnitude of these effects is strain dependent but not related to bacteriocin production. Starters’ acidification capacity is not significantly affected. Transcriptomic analyses showed that pMRC01 abortive infection (Abi) system is probably subjected to a complex regulatory control by Rgg-like ORF51 and CopG-like ORF58 proteins. These regulators are suggested to modulate the activity of the putative Abi effectors ORF50 and ORF49 exhibiting topology and functional similarities to the Rex system aborting bacteriophage λ lytic growth.
Resumo:
The main aim of this thesis is to document and explore the lived experience of Irish diocesan priests and former priests, in order to explore the reality of diocesan priesthood in contemporary Ireland, and to investigate how, if at all, diocesan priesthood has changed in Ireland during the past fifty years. It sought to do this by interrogating the stories of thirty-three diocesan priests and former priests, and by placing their individual stories within the broader context of Irish society and the Catholic Church, during the fifty-year period, 1962–2012. The research focused on three core areas of priesthood – identity, obedience, and celibacy – and it addressed the following questions. First, how do Irish diocesan priests understand their priesthood and how has this understanding changed over time, if at all? I will argue that three paradigms of priesthood co-exist in the contemporary Irish Church, and that each of these models corresponds with a distinct period in contemporary Irish Church history. I will also demonstrate the existence of underlying similarities in the cultural practice of priesthood that transcend the different generations of priests. Second, how do Irish diocesan priests negotiate their priesthood within a large and complex institution? My study suggests that Irish diocesan priests are typically loyal and obedient. However, they are not necessarily subservient. Third, how do Irish diocesan priests understand and experience celibacy in their day-to-day lives? My study demonstrates that celibacy is typically understood and experienced along a continuum, ranging from total acceptance to total rejection, with most priests somewhere in between. Fourth, I will argue that while priests are experiencing many difficulties in their lives, there is insufficient evidence from the present study to indicate they are experiencing a crisis.
Resumo:
Communication is important for social and other behavioural interactions in most marine mammal species. The bottlenose dolphin (Tursiops truncatus, Montagu, 1821) is a highly social species that use whistles as communication calls to express identity and to initiate and maintain contact between socially interactive individuals. In this thesis, the degree of variability in whistle behaviour and whistle characteristics was examined between different habitats on a range of spatial scales. The whistle characteristics that best discriminated between different communities were investigated, along with exploration of whistle variation in relation to habitat type, levels of social interaction and relatedness. Finally, the use and variability of individually distinctive calls (signature whistles) within and between Irish and US waters were also examined. Relatively high levels of whistle variation were found within a genetically and socially isolated population of dolphins in the Shannon Estuary, reflecting the need for individual identification and distinctive whistles in a population with long term site fidelity and high levels of social cohesion. Variation between reproductively separate communities in Irish waters was relatively small except between animals in inshore compared with continental shelf waters. The greatest differences in whistle structure overall were evident between dolphins using inshore and offshore US waters, likely reflecting social isolation of the two distinct ecotypes that occur in these waters but also variation in behaviour or habitat conditions. Variation found among inshore communities in US waters reflected similarities in habitat use and levels of social interaction. These findings suggest that vocal variation is socially mediated, behaviourally maintained and dependent on levels of social contact between individuals. The findings contribute to our understanding of the interaction of factors influencing vocalisation behaviour in this behaviourally complex and ecologically plastic species.
Resumo:
Very Long Baseline Interferometry (VLBI) polarisation observations of the relativistic jets from Active Galactic Nuclei (AGN) allow the magnetic field environment around the jet to be probed. In particular, multi-wavelength observations of AGN jets allow the creation of Faraday rotation measure maps which can be used to gain an insight into the magnetic field component of the jet along the line of sight. Recent polarisation and Faraday rotation measure maps of many AGN show possible evidence for the presence of helical magnetic fields. The detection of such evidence is highly dependent both on the resolution of the images and the quality of the error analysis and statistics used in the detection. This thesis focuses on the development of new methods for high resolution radio astronomy imaging in both of these areas. An implementation of the Maximum Entropy Method (MEM) suitable for multi-wavelength VLBI polarisation observations is presented and the advantage in resolution it possesses over the CLEAN algorithm is discussed and demonstrated using Monte Carlo simulations. This new polarisation MEM code has been applied to multi-wavelength imaging of the Active Galactic Nuclei 0716+714, Mrk 501 and 1633+382, in each case providing improved polarisation imaging compared to the case of deconvolution using the standard CLEAN algorithm. The first MEM-based fractional polarisation and Faraday-rotation VLBI images are presented, using these sources as examples. Recent detections of gradients in Faraday rotation measure are presented, including an observation of a reversal in the direction of a gradient further along a jet. Simulated observations confirming the observability of such a phenomenon are conducted, and possible explanations for a reversal in the direction of the Faraday rotation measure gradient are discussed. These results were originally published in Mahmud et al. (2013). Finally, a new error model for the CLEAN algorithm is developed which takes into account correlation between neighbouring pixels. Comparison of error maps calculated using this new model and Monte Carlo maps show striking similarities when the sources considered are well resolved, indicating that the method is correctly reproducing at least some component of the overall uncertainty in the images. The calculation of many useful quantities using this model is demonstrated and the advantages it poses over traditional single pixel calculations is illustrated. The limitations of the model as revealed by Monte Carlo simulations are also discussed; unfortunately, the error model does not work well when applied to compact regions of emission.
Resumo:
This research in progress paper addresses the IS issue in relation to conducting relevant research while keeping academic rigor. In particular, it contributes to the ongoing academic conversation around the investigation on how to incor-porate action in design science research. In this document the philosophical underpinnings of the recently proposed methodology called Action Design Re-search [1] are derived, outlined and integrated into Burrel and Morgan’s Par-adigmatic Framework (1979)[6]. The results so far show how Action Design Research can be considered as a particular case of Design Science Research (rather than a methodology closely related to Action Research) although they can assume two different epistemological positions. From these philosophical perspectives, future works will involve the inclusion of actual research projects using the three different methodologies. The final goal is to outline and structure the divergences and similarities of Action Design Research with Design Science Research and Canonical Action Research.
Resumo:
Anthropogenic pollutant chemicals pose a major threat to aquatic organisms. There is a need for more research on emerging categories of environmental chemicals such as nanomaterials, endocrine disruptors and pharmaceuticals. Proteomics offers options and advantages for early warning of alterations in environmental quality by detecting sub-lethal changes in sentinel species such as the mussel, Mytilus edulis. This thesis aimed to compare the potential of traditional biomarkers (such as enzyme activity measurement) and newer redox proteomic approaches. Environmental proteomics, especially a redox proteomics toolbox, may be a novel way to study pollutant effects on organisms which can also yield information on risks to human health. In particular, it can probe subtle biochemical changes at sub-lethal concentrations and thus offer novel insights to toxicity mechanisms. In the first instance, the present research involved a field-study in three stations in Cork Harbour, Ireland (Haulbowline, Ringaskiddy and Douglas) compared to an outharbour control site in Bantry Bay, Ireland. Then, further research was carried out to detect effects of anthropogenic pollution on selected chemicals. Diclofenac is an example of veterinary and human pharmaceuticals, an emerging category of chemical pollutants, with potential to cause serious toxicity to non-target organisms. A second chemical used for this study was copper which is a key source of contamination in marine ecosystems. Thirdly, bisphenol A is a major anthropogenic chemical mainly used in polycarbonate plastics manufacturing that is widespread in the environment. It is also suspected to be an endocrine disruptor. Effects on the gill, the principal feeding organ of mussels, were investigated in particular. Effects on digestive gland were also investigated to compare different outcomes from each tissue. Across the three anthropogenic chemicals studied (diclofenac, copper and bisphenol A), only diclofenac exposure did not show any significant difference towards glutathione transferase (GST) responses. Meanwhile, copper and bisphenol A significantly increased GST in gill. Glutathione reductase (GR) enzyme analysis revealed that all three chemicals have significant responses in gill. Catalase activity showed significant differences in digestive gland exposed to diclofenac and gills exposed to bisphenol A. This study focused then on application of redox proteomics; the study of the oxidative modification of proteins, to M. edulis. Thiol proteins were labelled with 5-iodoacetamidofluorescein prior to one-dimensional and two-dimensional electrophoresis. This clearly revealed some similarities on a portion of the redox proteome across chemical exposures indicating where toxicity mechanism may be common and where effects are unique to a single treatment. This thesis documents that proteomics is a robust tool to provide valuable insights into possible mechanisms of toxicity of anthropogenic contaminants in M. edulis. It is concluded that future research should focus on gill tissue, on protein thiols and on key individual proteins discovered in this study such as calreticulin and arginine kinase which have not previously been considered as biomarkers in aquatic toxicology prior to this study.
Resumo:
While bonobos and chimpanzees are both genetically and behaviorally very similar, they also differ in significant ways. Bonobos are more cautious and socially tolerant while chimpanzees are more dependent on extractive foraging, which requires tools. The similarities suggest the two species should be cognitively similar while the behavioral differences predict where the two species should differ cognitively. We compared both species on a wide range of cognitive problems testing their understanding of the physical and social world. Bonobos were more skilled at solving tasks related to theory of mind or an understanding of social causality, while chimpanzees were more skilled at tasks requiring the use of tools and an understanding of physical causality. These species differences support the role of ecological and socio-ecological pressures in shaping cognitive skills over relatively short periods of evolutionary time.
Resumo:
The mammalian odorant receptor (OR) repertoire is an attractive model to study evolution, because ORs have been subjected to rapid evolution between species, presumably caused by changes of the olfactory system to adapt to the environment. However, functional assessment of ORs in related species remains largely untested. Here we investigated the functional properties of primate and rodent ORs to determine how well evolutionary distance predicts functional characteristics. Using human and mouse ORs with previously identified ligands, we cloned 18 OR orthologs from chimpanzee and rhesus macaque and 17 mouse-rat orthologous pairs that are broadly representative of the OR repertoire. We functionally characterized the in vitro responses of ORs to a wide panel of odors and found similar ligand selectivity but dramatic differences in response magnitude. 87% of human-primate orthologs and 94% of mouse-rat orthologs showed differences in receptor potency (EC50) and/or efficacy (dynamic range) to an individual ligand. Notably dN/dS ratio, an indication of selective pressure during evolution, does not predict functional similarities between orthologs. Additionally, we found that orthologs responded to a common ligand 82% of the time, while human OR paralogs of the same subfamily responded to the common ligand only 33% of the time. Our results suggest that, while OR orthologs tend to show conserved ligand selectivity, their potency and/or efficacy dynamically change during evolution, even in closely related species. These functional changes in orthologs provide a platform for examining how the evolution of ORs can meet species-specific demands.
Resumo:
Adrenergic receptors are prototypic models for the study of the relations between structure and function of G protein-coupled receptors. Each receptor is encoded by a distinct gene. These receptors are integral membrane proteins with several striking structural features. They consist of a single subunit containing seven stretches of 20-28 hydrophobic amino acids that represent potential membrane-spanning alpha-helixes. Many of these receptors share considerable amino acid sequence homology, particularly in the transmembrane domains. All of these macromolecules share other similarities that include one or more potential sites of extracellular N-linked glycosylation near the amino terminus and several potential sites of regulatory phosphorylation that are located intracellularly. By using a variety of techniques, it has been demonstrated that various regions of the receptor molecules are critical for different receptor functions. The seven transmembrane regions of the receptors appear to form a ligand-binding pocket. Cysteine residues in the extracellular domains may stabilize the ligand-binding pocket by participating in disulfide bonds. The cytoplasmic domains contain regions capable of interacting with G proteins and various kinases and are therefore important in such processes as signal transduction, receptor-G protein coupling, receptor sequestration, and down-regulation. Finally, regions of these macromolecules may undergo posttranslational modifications important in the regulation of receptor function. Our understanding of these complex relations is constantly evolving and much work remains to be done. Greater understanding of the basic mechanisms involved in G protein-coupled, receptor-mediated signal transduction may provide leads into the nature of certain pathophysiological states.
Resumo:
The cDNA for the Syrian hamster alpha 1-adrenergic receptor has been cloned with oligonucleotides corresponding to the partial amino acid sequence of the receptor protein purified from DDT1MF-2 smooth muscle cells. The deduced amino acid sequence encodes a 515-residue polypeptide that shows the most sequence identity with the other adrenergic receptors and the putative protein product of the related clone G-21. Similarities with the muscarinic cholinergic receptors are also evident. Expression studies in COS-7 cells confirm that we have cloned the alpha 1-adrenergic receptor that couples to inositol phospholipid metabolism.
Resumo:
Enrique Arbós's five orchestrations of pieces from Iberia, the masterly piano work by his close friend, Isaac Albéniz, are among the most frequently programmed works in the Spanish orchestral repertoire today. Increased academic interest in Albéniz's orchestral output has revealed that Arbós's orchestration of Albéniz's piano solo, "El Puerto," from Iberia, bears striking similarities with Albéniz's unpublished orchestration of the same piece. Although Albéniz asked Arbós to take over the task of orchestrating "El Puerto," little is known about the details of this arrangement. To shed light on this issue, I have carefully reviewed the overlapping biographies of these two composers, as well as thoroughly analyzed the two scores for the first time. I conclude that Arbós's orchestration of "El Puerto" is indeed a revision of Albéniz's orchestration, and that this revision was a natural result of their close relationship.
Resumo:
Novel immune-type receptors (NITRs) are encoded by large multi-gene families and share structural and signaling similarities to mammalian natural killer receptors (NKRs). NITRs have been identified in multiple bony fish species, including zebrafish, and may be restricted to this large taxonomic group. Thirty-nine NITR genes that can be classified into 14 families are encoded on zebrafish chromosomes 7 and 14. Herein, we demonstrate the expression of multiple NITR genes in the zebrafish ovary and during embryogenesis. All 14 families of zebrafish NITRs are expressed in hematopoietic kidney, spleen and intestine as are immunoglobulin and T cell antigen receptors. Furthermore, all 14 families of NITRs are shown to be expressed in the lymphocyte lineage, but not in the myeloid lineage, consistent with the hypothesis that NITRs function as NKRs. Sequence analyses of NITR amplicons identify known alleles and reveal additional alleles within the nitr1, nitr2, nitr3, and nitr5 families, reflecting the recent evolution of this gene family.
Resumo:
The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.