931 resultados para Reticulação polimérica interfacial
Resumo:
本文系统研究了一种中性有机磷酸酷2一乙基己基麟酸二(2一乙基己基)酉旨(DEHEHP)从硝酸体系中萃取Ce~(4+)和F~-的热力学和动力学机理,并对该萃取剂的界面活性进行了深入的研究。在此基础上,探讨了钟(IV)与其他稀土和针分离的可能性,从理论上系统地研究了盐析剂存在下DEHEHP作为萃取剂对三价稀土(RE~(3+))的萃取规律,并遵循基础一应用的原则,完成了从氟碳饰矿的硝酸浸出液中提取四价饰的分馏串级萃取模拟实验。此外,我们也研究了DEHEHP与酸性鳌合萃取剂HPMBP的混合体系对RE~(3+)的协萃效应。基于上述研究,评估了DEHEHP在稀土萃取领域的潜在的应用前景。具体的研究内容如下:1.模拟氟碳钟矿硝酸浸出液,系统研究了复杂体系中DEHEHP萃取Ce(IV)和F(I)的热力学机理,推导了萃取反应方程式及其机理,硼酸的加入,既不被萃取,也不影响饰和氟的萃取。2.DEHEHP作为硝酸体系中饰(IV)的良好萃取剂,研究了饰(IV)与其他稀土和针分离的可能性。在此基础上,进行了DEHEHP从含F(I)、Ce(IV)的硝酸稀土溶液中提取Ce(W)的工艺模拟实验,并获得纯度为99.9-99.99%CeO_2,饰产品中ThO_2/CeO_2<10~(-4),该工艺高效简便,具有很好的应用前景。3.系统研究了在盐析剂存在下,DEHEHP从硝酸介质中萃取RE~(3+)的规律,发现了明显的四分组效应,并确定了Y在萃取系列中所处的位置,而Sc的萃取能力远远高于其它稀土元素。4.用层流恒界面池研究了DEHEHP萃取Ce(IV)和F(I)的传质动力学模式,考察了多种因素对萃取速率的影响,提出了水相化学反应机理,这与DEHEHP的界面活性有关,并且发现氟的存在,降低了钟的萃取速率。5.系统研究了各种因素对DEHEHP界面活性的影响,定性探讨了萃取剂界面活性与萃取动力学的关系,为萃取动力学传质模式的推导提供了辅助依据。6.考察了DEHEHP与酸性鳌合萃取剂HPMBP的混合体系分别在盐酸和硝酸介质中对RE~(3+)(包括Y~(3+))的萃取和分离,得出了协萃反应方程式和平衡常数,并计算了相邻稀土元素间的分离因素,讨论了此混合体系对部分稀土分组或两两分离的可能性。
Resumo:
本文选取比较常见的PP/EVA、PE/EVA共混体系作为增强交联研究的对象,研究了共混体系的增强交联规律,并针对目前普通使用的多官能团单体存在着与聚合物体系相容性差、易析出、高温挥发大的弱点,设计合成几种多官能团单体。此外,还研究了共混体系增强界面反应,讨论了增强界面反应的一般原理和增强界面反应对改善不相容共混体系相间粘附的作用影响。
Resumo:
Electrical measurements were combined with surface techniques to study the Pt/Si interfaces at various silicide formation temperatures. Effects of deep centers on the Schottky barrier heights were studied. Hydrogen plasma treatment was used to passivate the impurity/defect centers at the interfaces, and the effects of hydrogenation on the Schottky barrier heights were also examined. Combining our previous study on the Pt/Si interfacial reaction, factors influencing the PtSi/Si Schottky barrier diode are discussed.
Resumo:
Ultraviolet and X-ray photoemission spectroscopies (UPS and XPS) have been employed to SnO2 and its interface with P-type a-SiCx:H. The HeI valence band spectra of SnO2 show that the valence band maximum (VBM) shifts from 4.7 eV to 3.6 eV below the Fermi level (E(F)), and the valence band tail (VBT) extends up to the E(F), as a consequence of H-plasma treatments. The work function difference between SnO2 and P a-SiCx:H is found to decrease from 0.98 eV to 0.15 eV, owing to the increase of the work function of the treated SnO2. The reduction of SnO2 to metallic Sn is also observed by XPS profiling, and it is found that this leads to a wider interfacial region between the treated SnO2 and the successive growth of P a-SiCx:H.
Resumo:
Magnetic multilayers [NixFe100-x/Mo-30] grown by dc-magnetron sputtering were investigated by x-ray small-angle reflection and high-angle diffraction. Structural parameters of the multilayers such as the superlattice periods, the interfacial roughness, and interplane distance were obtained. It was found that for our NixFe100-x/Mo system, the Mo layer has bcc structure with [110] preferential orientation, while the preferential orientation of the NixFe100-x layer changes from a fee structure with [111] preferential orientation to a bcc structure with [110] preferential orientation with decreasing values of x. An intermixing layer located in the interlayer region between the NixFe100-x and Mo layers exists in the multilayers, and its thickness is almost invariant with respect to an increase of Mo layer thickness and/or a decrease of x in the region of x greater than or equal to 39. The thickness of the intermixing layer falls to zero when x less than or equal to 23.
Resumo:
In this work we investigate the lateral periodicity of symmetrically strained (GaIn)As/GaAs/Ga(PAs)/GaAs superlattices by means of X-ray scattering techniques. The multilayers were grown by metalorganic Vapour phase epitaxy on (001)GaAs substrates, which were intentionally off-oriented towards the [011]-direction. The substrate off-orientation and the strain distribution was found to affect the structural properties of the superlattices inducing the generation of laterally ordered macrosteps. Several high-resolution triple-crystal reciprocal space maps, which were recorded for different azimuth angles in the vicinity of the (004) Bragg diffraction and contour maps of the specular reflected beam collected in the vicinity of the (000) reciprocal lattice point, are reported and discussed. The reciprocal space maps clearly show a two-dimensional periodicity of the X-ray peak intensity distribution which can be ascribed to the superlattice periodicity in the direction of the surface normal and to a lateral periodicity in a crystallographic direction coinciding with the miscut orientation. The distribution and correlation of the vertical as well as of the lateral interface roughness was investigated by specular reflectivity and diffuse scattering measurements. Our results show that the morphology of the roughness is influenced by the off-orientation angle and can be described by a 2-dimensional waviness.
Resumo:
A low resistance and shallow ohmic contact to n-GaAs is performed by using Ge/Pd/GaAs trilayer structure and rapid thermal annealing process. The dependence of specific contact resistivity on the temperature of rapid thermal annealing is investigated. A good ohmic contact is formed after annealing at 400-500 degrees C for 60 s. The best specific contact resistivity is 1.4 x 10(-6) Omega cm(2). Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS) and scanning electron microscopy (SEM) are used to analyze the interfacial microstructure. A strong correlation between the contact resistance and the film microstructure is observed.
Resumo:
The interfacial behavior of the single quantum well (SQW) GaAs/AlxGa1-xAs electrode in HQ/BQ and Fc/Fc(+) electrolytes was characterized respectively by studying the quantum confined Stark effect and Franz-Keldysh oscillation with electrolyte electroreflectance spectroscopy. The interaction of the surface state of the SQW electrode with redox species and its effects on the distribution of external bias at the interface of the SQW electrode are discussed.
Resumo:
Electrical, structural and reaction characteristics of In-based ohmic contacts to n-GaAs were studied. Attempts were made to form a low-band-gap interfacial phase of InGaAs to reduce the barrier height at the metal/semiconductor junction, thus yielding low-resistance, highly reliable contacts. The contacts were fabricated by e-beam sputtering Ni, NiIn and Ge targets on VPE-grown n(+)-GaAs film (approximate to 1 mu m, 2 x 10(18) cm(-3)) in ultrahigh vacuum as the structure of Ni(200 Angstrom)/NiIn(100 Angstrom)/Ge(40 Angstrom)/n(+)-GaAs/SI-GaAs, followed by rapid thermal annealing at various temperatures (500-900 degrees C). In this structure, a very thin layer of Ge was employed to play the role of heavily doping donors and diffusion limiters between In and the GaAs substrate. Indium was deposited by sputtering NiIn alloy instead of pure In in order to ensure In atoms to be distributed uniformly in the substrate; nickel was chosen to consume the excess indium and form a high-temperature alloy of Ni3In. The lowest specific contact resistivity (rho(c)) of (1.5 +/- 0.5)x 10(-6) cm(2) measured by the Transmission Line Method (TLM) was obtained after annealing at 700 degrees C for 10 s. Auger sputtering depth profile and Transmission Electron Microscopy (TEM) were used to analyze the interfacial microstructure. By correlating the interfacial microstructure to the electronical properties, InxGa1-xAs phases with a large fractional area grown epitaxially on GaAs were found to be essential for reduction of the contact resistance.
Resumo:
Radiation hardness of SIMOX(separation by implanted oxygen)/NMOSFET by implanting N and F ion has been carefully studied in this paper.Both N and F ion implantation can reduce hole traps in the buried oxide and the interfacial regions,which consequently improves the radiation hardness,especially under high dose radiation conditions.Moreover,experimental data show that the higher dose of the N and F ion implantation is,the better radiation hardness is achieved.In order to minimize the influence on the threshold voltage of devices,it is important to choose suitable implantation dose and energy of N or F implantation that have smaller impact on the preradiation device performance.
Resumo:
Cubic GaN/GaAs(0 0 1) epilayers and hexagonal inclusions are characterized by X-ray diffraction (XRD), Photoluminescence (PL), Raman spectroscopy, and transmission electron microscopy (TEM). The X-ray {0 0 0 2} and (1 0 (1) over bar 0) pole figures show that the orientation relationships between cubic GaN and hexagonal inclusions are (1 1 1)//(0 0 0 1), <1 1 2 >//<1 0 (1) over bar 0 >. The distribution of hexagonal inclusions mainly results from the interfacial bonding disorder in the grain boundaries parallel to hexagonal <0 0 0 1 > directions and the lattice mismatch in <0 0 0 1 > directions on {1 0 (1) over bar 0} planes. In order to reduce the energy increase in cubic epilayers, hexagonal lamellas with smaller sizes in <0 0 0 1 > directions often nucleate inside the buffer layer or near the interface between the buffer layer and the epitaxial layer, and penetrate through the whole epitaxial layer with this orientation relationship. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Nano-fibrillar adhesives can adhere strongly to surfaces as a gecko does. The size of each fiber has significant effects on the adhesion enhancement, especially on rough surfaces. In the present study, we report the size effects on the normal and shear strength of adhesion for a single viscoelastic fiber. It is found that there exists a limited region of the critical sizes under which the interfacial normal or tangential tractions uniformly attain the theoretical adhesion strength. The region for a viscoelastic fiber under tension with similar material constants to a gecko's spatula is 135-255 nm and that under torque is 26.5-52 nm. This finding is significant for the development of artificial biomimetic attachment systems.
Resumo:
We describe a first-principles-based strategy to predict the macroscopic toughness of a gamma-Ni(Al)/alpha-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacernent curves are obtained from derivatives of the energy. Calculations are performed in mode I (opening), mode II (shear) and at a phase angle of 45 degrees. The shear calculations are conducted for displacements along < 110 > and < 112 > of the Ni lattice. A generalized interface potential function is used to characterize the results. Initial fitting to both the shear and normal stress results is required to calibrate the unknowns. Thereafter, consistency is established by using the potential to predict other traction quantities. The potential is incorporated as a traction/displacement function within a cohesive zone model and used to predict the steady-state toughness of the interface. For this purpose, the plasticity of the Ni alloy must be known, including the plasticity length scale. Measurements obtained for a gamma-Ni superalloy are used and the toughness predicted over the full range of mode mixity. Additional results for a range of alloys are used to demonstrate the influences of yield strength and length scale.
Resumo:
The coupling mechanism of thermocapillary convection and evaporation effect in evaporating liquids was studied experimentally. The experiments were carried out to study a thin evaporating liquid layer in a rectangular test cell when the upper surface was open to air. By altering the imposed horizontal temperature differences and heights of liquid layers, the average evaporating rate and interfacial temperature profiles were measured. The flow fields were also visualized by PIV method. For comparison, the experiments were repeated by use of another two non-evaporating liquids to study the influence of evaporation effect. The results reveal evidently the role that evaporation effect plays in the coupling with thermocapillary convection.