960 resultados para Resin Curing
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work it was studied the behavior of four water bath curing cycles of heat activated acrylic resin considered as long duration (I – 65ºC for 30 min;50ºC for 23h and 30min; and 100º C for 1h; II- 50ºC for 24h and the rapid cycle), compared to the known long time curing cycle (9 hours for 72ºC) and short curing cycle (1 h for 65ºC; 30 min to elevate at 100º C and 1:00 to 100º C). Analysis consisted of observations and verification of the residual monomer, weight alterations, dimensional, dimensional lineal, porosity and hardness to determine material performance. The results pointed out that residual monomer presented statistical significant differences in the factor storage and interaction among the factors cycle X storage for weight alteration; statistical significant differences for the factor storage for lineal dimensional alterations, without significant differences for hardness. Porosity was verified in minimum degree in the cycle III and in appreciable amount in the cycle IV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective. This study aimed to investigate the influence of restoration thickness to the fracture resistance of adhesively bonded Lava (TM) Ultimate CAD/CAM, a Resin Nano Ceramic(RNC), and IPS e. max CAD ceramic.Methods. Polished Lava (TM) Ultimate CAD/CAM (Group L), sandblasted Lava (TM) Ultimate CAD/CAM (Group LS), and sandblasted IPS e.max CAD (Group ES) discs (n=8, phi=10 mm) with a thickness of respectively 0.5 mm, 1.0 mm, 1.5 mm, 2.0 mm, and 3.0 mm were cemented to corresponding epoxy supporting discs, achieving a final thickness of 3.5 mm. All the 120 specimens were loaded with a universal testing machine at a crosshead speed of 1 mm/min. The load (N) at failure was recorded as fracture resistance. The stress distribution for 0.5 mm restorative discs of each group was analyzed by Finite Element Analysis (FEA). The results of facture resistances were analyzed by one-way ANOVA and regression.Results. For the same thickness of testing discs, the fracture resistance of Group L was always significantly lower than the other two groups. The 0.5 mm discs in Group L resulted in the lowest value of 1028 (112) N. There was no significant difference between Group LS and Group ES when the restoration thickness ranged between 1.0 mm and 2.0 mm. There was a linear relation between fracture resistance and restoration thickness in Group L (R = 0.621, P < 0.001) and in Group ES (R = 0.854, P < 0.001). FEA showed a compressive permanent damage in all groups.Significance. The materials tested in this in vitro study with the thickness above 0.5 mm could afford the normal bite force. When Lava Ultimate CAD/CAM is used, sandblasting is suggested to get a better bonding. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Cashew Nut Shell Liquid (CNSL) can be considered as a versatile raw material with wide applications in the form of surface coatings, paints and varnishes, as well as the production of polymers. Within this context, the chemical constituents of CNSL (anarcadic acid, cardanol, 2-cardol and methylcardol) become promising in the development of new materials components. Once separated, CNSL can be used in the research and development of additives, surfactants, pharmaceuticals, pesticides, polymers, resins and others. Being a byproduct, CNSL used in the preparation of new materials is characterized as a truly technological innovation.
Resumo:
Purpose: This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement.Materials and Methods: Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05).Results: The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade.Conclusions: The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used.Clinical Significance: Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations.
Resumo:
This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesivesbut, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levelswe tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via -casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP inhibitors into the synthesis of therapeutic adhesives that may enhance the longevity of hybrid layers and the overall clinical performance of adhesively bonded resin composite restorations.
Resumo:
Purpose: The purpose of this study was to comparatively assess the seven-year clinical performance of a one-bottle etch-and-rinse adhesive with resin composite (RC) and resin-modified glass ionomer (RMGI) restorations in noncarious cervical lesions.Methods and Materials: One operator placed 70 restorations (35 restorations in each group) in 30 patients under rubber dam isolation without mechanical preparation. The restorations were directly assessed by two independent examiners, using modified US Public Health Service criteria at baseline and 6, 12, 24, 60, and 84 months. The obtained data were tabulated and statistically analyzed using the Fisher and McNemar tests. A difference was significant if p<0.05.Results: Twenty patients were available for recall after seven years (66.6%), and 25 RC and 26 RMGI restorations out of 70 restorations were evaluated. Excellent agreement was registered for all criteria between examiners (kappa >= 0.85). Alfa and bravo scores were classified as clinically acceptable. The McNemar test detected significant differences within RC restorations between baseline and seven-year evaluations for anatomic form, marginal integrity, and retention (p<0.05). For RMGI restorations, a significant difference was identified for marginal integrity (p<0.05). As to material comparison, the Fisher exact showed a better retention performance for RMGI restorations than for RC restorations (p<0.05). Twelve composite restorations were dislodged (52.0% retention) and three ionomer restorations were lost (88.5% retention). The cumulative success rate for RC and RMGI was 30% and 58.1%, respectively.Conclusions: After seven years of service, the clinical performance of RMGI restorations was superior to that of the adhesive system/resin composite restorations in this study.
Resumo:
Objective: This study was intended to quantify the marginal leakage of three glass-ionomer-resin composite hybrid materials and compare it with the leakage exhibited by a glass-ionomer cement and a bonded resin composite system. Method and materials: Standardized Class V cavities were prepared on root surfaces of 105 extracted human teeth, randomly assigned to five groups of 21 each, and restored with either Ketac-Fil Aplicap, Z100/Scotchbond Multi-Purpose Plus, Vitremer, Photac-Fil Aplicap, or Dyract. The teeth were thermally stressed for 500 cycles and stained with methylene blue. The microleakage was quantified spectrophotometrically, and the data were statistically analyzed with Friedman's test. Results: There were no significant differences in microleakage among the five groups. Restorations of all tested materials showed some marginal leakage in Class V cavities. Conclusion: The microleakage performance of glass-ionomer-resin composite hybrid materials was similar to those of a conventional glass-ionomer and a bonded resin composite system.
Resumo:
Being the corrosion one of the great problems facing the industry today, specifically the internal corrosion of pipes in chemical and petrochemical industries, hence this work proposes a new type of internal coating in order to avoid fouling and decrease the pressure loss in the flow. For this, we use a composition of vinyl ester resins and manometric loads, which after cleaning and preparation of the internal surface of the tube will be applied through a process of centrifugation, adjusted by a lathe. After curing the resin, a test of roughness will be realized in order to analyze the reduction of friction factor and thus be able to conclude whether there was a significant decrease in pressure drop. With test results in hand, we hope to obtain a coating that meets most of the properties required by the industry and to provide a reduction in operating costs and a visible improvement in the conditions of use of the pipe
Resumo:
To evaluate changes in microhardness, roughness and surface morphology of dental enamel and composite resin after different tooth bleaching techniques. Material and Methods: Dental fragments from bovine incisors with composite resin restorations were submitted to different bleaching protocols: G1 – daily 8 hours application of a 10% carbamide peroxide (CP) gel during 21 days; G2: 3 applications of 15 minutes of a 38% hydrogen peroxide (H2O2) gel; G3: 38% H2O2 gel associated to irradiation with LED (470nm) during 6 minutes. The Knoop micro hardness of enamel and composite resin were evaluated at 1, 7, 14 and 21 days for G1, and after 1, 2 and 3 sessions for G2 and G3. The roughness and superficial morphology (atomic force microscopy) were evaluated before and at the end of the bleaching treatment. The data were analyzed by Mann-Whitney and Wilcoxon tests (=5%). Results: Significant reduction on enamel hardness was observed after 2 and 3 sessions for G2 and G3. For composite, the reduction occurred after 21 days for G1, and after 3 sessions for G2 and G3 (p<0.05). Significant reduction on roughness and superficial morphology were observed only for enamel of G1 group (p<0.05). Conclusion: The 10% CP gel promoted only superficial alterations on dental enamel, while the 38% H2O2 gel promoted mineral reduction of this dental tissue. All the bleaching protocols promoted reduction on hardness of composite resin.