928 resultados para Residual-based tests
Resumo:
This master’s thesis describes the research done at the Medical Technology Laboratory (LTM) of the Rizzoli Orthopedic Institute (IOR, Bologna, Italy), which focused on the characterization of the elastic properties of the trabecular bone tissue, starting from october 2012 to present. The approach uses computed microtomography to characterize the architecture of trabecular bone specimens. With the information obtained from the scanner, specimen-specific models of trabecular bone are generated for the solution with the Finite Element Method (FEM). Along with the FEM modelling, mechanical tests are performed over the same reconstructed bone portions. From the linear-elastic stage of mechanical tests presented by experimental results, it is possible to estimate the mechanical properties of the trabecular bone tissue. After a brief introduction on the biomechanics of the trabecular bone (chapter 1) and on the characterization of the mechanics of its tissue using FEM models (chapter 2), the reliability analysis of an experimental procedure is explained (chapter 3), based on the high-scalable numerical solver ParFE. In chapter 4, the sensitivity analyses on two different parameters for micro-FEM model’s reconstruction are presented. Once the reliability of the modeling strategy has been shown, a recent layout for experimental test, developed in LTM, is presented (chapter 5). Moreover, the results of the application of the new layout are discussed, with a stress on the difficulties connected to it and observed during the tests. Finally, a prototype experimental layout for the measure of deformations in trabecular bone specimens is presented (chapter 6). This procedure is based on the Digital Image Correlation method and is currently under development in LTM.
Resumo:
Laser shock peening is a technique similar to shot peening that imparts compressive residual stresses in materials for improving fatigue resistance. The ability to use a high energy laser pulse to generate shock waves, inducing a compressive residual stress field in metallic materials, has applications in multiple fields such as turbo-machinery, airframe structures, and medical appliances. The transient nature of the LSP phenomenon and the high rate of the laser's dynamic make real time in-situ measurement of laser/material interaction very challenging. For this reason and for the high cost of the experimental tests, reliable analytical methods for predicting detailed effects of LSP are needed to understand the potential of the process. Aim of this work has been the prediction of residual stress field after Laser Peening process by means of Finite Element Modeling. The work has been carried out in the Stress Methods department of Airbus Operations GmbH (Hamburg) and it includes investigation on compressive residual stresses induced by Laser Shock Peening, study on mesh sensitivity, optimization and tuning of the model by using physical and numerical parameters, validation of the model by comparing it with experimental results. The model has been realized with Abaqus/Explicit commercial software starting from considerations done on previous works. FE analyses are “Mesh Sensitive”: by increasing the number of elements and by decreasing their size, the software is able to probe even the details of the real phenomenon. However, these details, could be only an amplification of real phenomenon. For this reason it was necessary to optimize the mesh elements' size and number. A new model has been created with a more fine mesh in the trough thickness direction because it is the most involved in the process deformations. This increment of the global number of elements has been paid with an "in plane" size reduction of the elements far from the peened area in order to avoid too high computational costs. Efficiency and stability of the analyses has been improved by using bulk viscosity coefficients, a merely numerical parameter available in Abaqus/Explicit. A plastic rate sensitivity study has been also carried out and a new set of Johnson Cook's model coefficient has been chosen. These investigations led to a more controllable and reliable model, valid even for more complex geometries. Moreover the study about the material properties highlighted a gap of the model about the simulation of the surface conditions. Modeling of the ablative layer employed during the real process has been used to fill this gap. In the real process ablative layer is a super thin sheet of pure aluminum stuck on the masterpiece. In the simulation it has been simply reproduced as a 100µm layer made by a material with a yield point of 10MPa. All those new settings has been applied to a set of analyses made with different geometry models to verify the robustness of the model. The calibration of the model with the experimental results was based on stress and displacement measurements carried out on the surface and in depth as well. The good correlation between the simulation and experimental tests results proved this model to be reliable.
13C NMR of a single molecule magnet: analysis of pseudocontact shifts and residual dipolar couplings
Resumo:
Paramagnetic triple decker complexes of lanthanides are promising Single Molecule Magnets (SMMs), with many potential uses. Some of them show preferable relaxation behavior, which enables the recording of well resolved NMR spectra. These axially symmetric complexes are also strongly magnetically anisotropic, and this property can be described with the axial component of the magnetic susceptibility tensor, χa. For triple decker complexes with phthalocyanine based ligands, the Fermi˗contact contribution is small. Hence, together with the axial symmetry, the experimental chemical shifts in 1H and 13C NMR spectra can be modeled easily by considering pseudocontact and orbital shifts alone. This results in the determination of the χa value, which is also responsible for molecular alignment and consequently for the observation of residual dipolar couplings (RDCs). A detailed analysis of the experimental 1H-13C and 1H-1H couplings revealed that contributions from RDCs (positive and negative) and from dynamic frequency shifts (negative for all observed couplings) have to be considered. Whilst the pseudocontact shifts depend on the average positions of 1H and 13C nuclei relative to the lanthanide ions, the RDCs are related to the mobility of nuclei they correspond to. This phenomenon allows for the measurement of the internal mobility of the various groups in the SMMs.
Resumo:
The aim of this thesis was the formulation of new chitosan based delivery systems for transmucosal drug administration. Transmucosal routes, such as buccal, vaginal and nasal routes, allow the circumvention of the hepatic first pass metabolism and avoid the gastrointestinal chemical and enzymatic degradations. Moreover, transmucosal drug administration can allow to avoid pain or discomfort caused by injections, when drugs are administered through parenteral routes, thus increasing patient compliance. On the other side, the major disadvantage of transmucosal drug administration is represented by the presence of biological fluids and mucus that can remove drug systems from the application site, thus reducing the contact time between drug and mucosa and consequently, decreasing drug bioavailability. For this reason, in this study, the investigation of chitosan delivery systems as mucoadhesive formulations able to increase drugs residence time and to improve their bioavailability, was taken into account. In the paper 1, buccal films based on chitosan-gelatin complexes were prepared and loaded with propranolol hydrochloride. The complexes were characterized and studied in order to evaluate their physical- chemical properties and their ability to release the drug and to allow its permeation through buccal mucosa. In the paper 2, vaginal inserts based on chitosan/alginate complexes were formulated for local delivery of chlorhexidine digluconate. Tests to evaluate the interaction between the polymers and to study drug release properties were performed, as well as the determination of antimicrobial activity against the patogens responsible of vaginitis and candidosis. In the project 3, chitosan based nanoparticles containing cyclodextrin and other excipients, with the capacity to modify insulin bioavailabity were formulated for insulin nasal delivery. Nanoparticles were characterized in terms of size, stability and drug release. Moreover, in vivo tests were performed in order to study the hypoglycemic reduction in rats blood samples.
Resumo:
Despite several clinical tests that have been developed to qualitatively describe complex motor tasks by functional testing, these methods often depend on clinicians' interpretation, experience and training, which make the assessment results inconsistent, without the precision required to objectively assess the effect of the rehabilitative intervention. A more detailed characterization is required to fully capture the various aspects of motor control and performance during complex movements of lower and upper limbs. The need for cost-effective and clinically applicable instrumented tests would enable quantitative assessment of performance on a subject-specific basis, overcoming the limitations due to the lack of objectiveness related to individual judgment, and possibly disclosing subtle alterations that are not clearly visible to the observer. Postural motion measurements at additional locations, such as lower and upper limbs and trunk, may be necessary in order to obtain information about the inter-segmental coordination during different functional tests involved in clinical practice. With these considerations in mind, this Thesis aims: i) to suggest a novel quantitative assessment tool for the kinematics and dynamics evaluation of a multi-link kinematic chain during several functional motor tasks (i.e. squat, sit-to-stand, postural sway), using one single-axis accelerometer per segment, ii) to present a novel quantitative technique for the upper limb joint kinematics estimation, considering a 3-link kinematic chain during the Fugl-Meyer Motor Assessment and using one inertial measurement unit per segment. The suggested methods could have several positive feedbacks from clinical practice. The use of objective biomechanical measurements, provided by inertial sensor-based technique, may help clinicians to: i) objectively track changes in motor ability, ii) provide timely feedback about the effectiveness of administered rehabilitation interventions, iii) enable intervention strategies to be modified or changed if found to be ineffective, and iv) speed up the experimental sessions when several subjects are asked to perform different functional tests.
Resumo:
Weltweit existiert keine zum Tierversuch alternative Methode, um adsorbierte Pertussis-Impfstoffe auf restliche Toxin-Aktivität hin zu untersuchen. Der im Europäischen Arzneibuch vorgeschriebene Tierversuch besitzt nach Erfahrungen der Industrie, internationaler Prüfbehörden sowie des Paul-Ehrlich-Institutes eine schlechte Aussagekraft. Er ist wenig standardisierbar und weist häufig ein zweifelhaftes Ergebnis auf, so dass Wiederholungen und damit einhergehend ein hoher Verbrauch an Versuchstieren unumgänglich sind. Enthält der Impfstoff Reste von nicht-inaktiviertem Pertussis-Toxin (PTx), muss mit schweren und schwersten Nebenwirkungen bei den Impflingen gerechnet werden. In dieser Arbeit wurde ein In vitro-Nachweis für aktives PTx entwickelt. rnAngeregt durch Publikationen, wonach Pertussis-Toxin humane Monozyten aktiviert, wurde zunächst versucht, diesen Effekt zum Toxin-Nachweis auszunutzen. Die vorliegende Arbeit zeigt jedoch eindeutig, dass Pertussis-Toxin selbst nicht zur Stimulation humaner Monozyten führt. Vielmehr konnte nachgewiesen werden, dass die Aktivierung dieser Immunzellen auf Kontaminationen durch Lipopolysaccharide zurückzuführen ist. Damit wurden die Aussagen in den oben erwähnten Veröffentlichungen widerlegt. Dieses Ergebnis wurde bereits zur Publikation eingereicht.rnNunmehr wurden verschiedene Ansätze zum Nachweis von Pertussis-Toxin entwickelt, welche seine enzymatischen Aktivitäten als NAD-Glycohydrolase und ADP-Ribosyltransferase ausnutzen. Zunächst wurde versucht, die Hydrolyse von NAD zu ADP-Ribose und Nicotinamid photometrisch nachzuweisen. Wegen unbefriedigender Sensitivität wurde dieses Verfahren zu einem fluorometrischen Nachweis weiterentwickelt. Verwendet wurde hier fluorogenes etheno-NAD, welches von Pertussis-Toxin als Substrat akzeptiert wird. Letzteres Prinzip ist zum In vitro-Nachweis von Pertussis-Toxin geeignet, wird jedoch durch das in Impfstoffen häufig verwendete Adsorbens Aluminiumhydroxid gestört. Deshalb wurde dieser Ansatz aufgegeben und ein neuer Weg verfolgt, welcher am Energiestoffwechsel von humanen Zellen ansetzt. Eine Konsequenz des Angriffs von Pertussis-Toxin auf seine Zielzellen im Respirationstrakt besteht – nach komplexen Reaktionen des Signaltransduktionsweges – im Absenken des ATP-Gehaltes. Als menschliche Surrogat-Zellen wurden frisch isolierte periphere mononukleäre Zellen (PBMCs) sowie die permanente Lymphozyten-Zelllinie Jurkat eingesetzt und deren ATP-Gehalt mittels Luziferin-Luziferase-Lumineszenz gemessen. Der Test wird nicht durch Lipopolysaccharid gestört und auch Aluminiumhydroxid übt erst nach mehreren Stunden Inkubation einen interferierenden Einfluss aus. Ebenso konnte aktives Pertussis-Toxin mit Hilfe kryokonservierter PBMCs detektiert werden, auch in orientierenden Versuchen mit komplexen Impfstoffen. Der Pertussis-ATP-Test kommt der In vivo-Situation in der Zelle sehr nahe, weil beide Untereinheiten des Toxins in einem Test überprüft werden. Demnach soll er Bestandteil einer geplanten internationalen Studie zu alternativen Pertussis-Toxin-Testungen sein.
Resumo:
Lesions to the primary geniculo-striate visual pathway cause blindness in the contralesional visual field. Nevertheless, previous studies have suggested that patients with visual field defects may still be able to implicitly process the affective valence of unseen emotional stimuli (affective blindsight) through alternative visual pathways bypassing the striate cortex. These alternative pathways may also allow exploitation of multisensory (audio-visual) integration mechanisms, such that auditory stimulation can enhance visual detection of stimuli which would otherwise be undetected when presented alone (crossmodal blindsight). The present dissertation investigated implicit emotional processing and multisensory integration when conscious visual processing is prevented by real or virtual lesions to the geniculo-striate pathway, in order to further clarify both the nature of these residual processes and the functional aspects of the underlying neural pathways. The present experimental evidence demonstrates that alternative subcortical visual pathways allow implicit processing of the emotional content of facial expressions in the absence of cortical processing. However, this residual ability is limited to fearful expressions. This finding suggests the existence of a subcortical system specialised in detecting danger signals based on coarse visual cues, therefore allowing the early recruitment of flight-or-fight behavioural responses even before conscious and detailed recognition of potential threats can take place. Moreover, the present dissertation extends the knowledge about crossmodal blindsight phenomena by showing that, unlike with visual detection, sound cannot crossmodally enhance visual orientation discrimination in the absence of functional striate cortex. This finding demonstrates, on the one hand, that the striate cortex plays a causative role in crossmodally enhancing visual orientation sensitivity and, on the other hand, that subcortical visual pathways bypassing the striate cortex, despite affording audio-visual integration processes leading to the improvement of simple visual abilities such as detection, cannot mediate multisensory enhancement of more complex visual functions, such as orientation discrimination.
Resumo:
Natural stones have been widely used in the construction field since antiquity. Building materials undergo decay processes due to mechanical,chemical, physical and biological causes that can act together. Therefore an interdisciplinary approach is required in order to understand the interaction between the stone and the surrounding environment. Utilization of buildings, inadequate restoration activities and in general anthropogenic weathering factors may contribute to this degradation process. For this reasons, in the last few decades new technologies and techniques have been developed and introduced in the restoration field. Consolidants are largely used in restoration and conservation of cultural heritage in order to improve the internal cohesion and to reduce the weathering rate of building materials. It is important to define the penetration depth of a consolidant for determining its efficacy. Impregnation mainly depends on the microstructure of the stone (i.e. porosity) and on the properties of the product itself. Throughout this study, tetraethoxysilane (TEOS) applied on globigerina limestone samples has been chosen as object of investigation. After hydrolysis and condensation, TEOS deposits silica gel inside the pores, improving the cohesion of the grains. X-ray computed tomography has been used to characterize the internal structure of the limestone samples,treated and untreated with a TEOS-based consolidant. The aim of this work is to investigate the penetration depth and the distribution of the TEOS inside the porosity, using both traditional approaches and advanced X-ray tomographic techniques, the latter allowing the internal visualization in three dimensions of the materials. Fluid transport properties and porosity have been studied both at macroscopic scale, by means of capillary uptake tests and radiography, and at microscopic scale,investigated with X-ray Tomographic Microscopy (XTM). This allows identifying changes in the porosity, by comparison of the images before and after the treatment, and locating the consolidant inside the stone. Tests were initially run at University of Bologna, where characterization of the stone was carried out. Then the research continued in Switzerland: X-ray tomography and radiography were performed at Empa, Swiss Federal Laboratories for Materials Science and Technology, while XTM measurements with synchrotron radiation were run at Paul Scherrer Institute in Villigen.
Resumo:
Stratigraphic studies carried out over the last decades in Italy and elsewhere testify a growing interest in Quaternary deposits and in the influence of climate change on their architecture. The subsurface of the Po Plain, in its topmost portion, is made up of alluvial deposits organized in depositional cycles at different scales. This PhD thesis provides millennial-scale stratigraphic reconstruction of the Late Pleistocene-Holocene deposits beneath the southern Po Plain, based on basin-scale correlation of laterally-extensive buried soil horizons. Far from the aim of characterizing palaeosols from a mineralogical and geochemical point of view, we focused on the physical and stratigraphic significance of these horizons. In the Bologna urban area, which hosts an abundance of stratigraphic data, the correlation between seventeen continuously-cored boreholes led to the identification of five vertically-stacked palaeosol-bounded sequences within the 14C time window. In a wide portion of the alluvial plain north of Bologna, far away from the Apenninic margin and from the Po River, where subsurface stratigraphic architecture is dominated by markedly lenticular sediment bodies, palaeosols revealed to be the only stratigraphic marker of remarkable lateral continuity. These horizons are characterized by peculiar resistance values, which make them easily identifiable via pocket penetration tests. Palaeosols reveal specific geometric relationships with the associated alluvial facies associations, allowing reliable estimates of soil development as a function of alluvial dynamics. With the aid of sixty new radiocarbon dates, a reliable age attribution and likely time intervals of exposure were assigned to each palaeosol. Vertically-stacked palaeosols delimitate short-term depositional cycles, likely related to the major episodes of climatic change of the last 40 ky. Through integration of stratigraphic data with 750 archaeological reports from the Bologna area, the impact of human settlements on depositional and pedogenic processes during the late Holocene was investigated.
Resumo:
Epoxy resins are mainly produced by reacting bisphenol A with epichlorohydrin. Growing concerns about the negative health effects of bisphenol A are urging researchers to find alternatives. In this work diphenolic acid is suggested, as it derives from levulinic acid, obtained from renewable resources. Nevertheless, it is also synthesized from phenol, from fossil resources, which, in the current paper has been substituted by plant-based phenols. Two interesting derivatives were identified: diphenolic acid from catechol and from resorcinol. Epichlorohydrin on the other hand, is highly carcinogenic and volatile, leading to a tremendous risk of exposure. Thus, two approaches have been investigated and compared with epichlorohydrin. The resulting resins have been characterized to find an appropriate application, as epoxy are commonly used for a wide range of products, ranging from composite materials for boats to films for food cans. Self-curing capacity was observed for the resin deriving from diphenolic acid from catechol. The glycidyl ether of the diphenolic acid from resorcinol, a fully renewable compound, was cured in isothermal and non-isothermal tests tracked by DSC. Two aliphatic amines were used, namely 1,4-butanediamine and 1,6-hexamethylendiamine, in order to determine the effect of chain length on the curing of an epoxy-amine system and determine the kinetic parameters. The latter are crucial to plan any industrial application. Both diamines demonstrated superior properties compared to traditional bisphenol A-amine systems.
Resumo:
Coastal sand dunes represent a richness first of all in terms of defense from the sea storms waves and the saltwater ingression; moreover these morphological elements constitute an unique ecosystem of transition between the sea and the land environment. The research about dune system is a strong part of the coastal sciences, since the last century. Nowadays this branch have assumed even more importance for two reasons: on one side the born of brand new technologies, especially related to the Remote Sensing, have increased the researcher possibilities; on the other side the intense urbanization of these days have strongly limited the dune possibilities of development and fragmented what was remaining from the last century. This is particularly true in the Ravenna area, where the industrialization united to the touristic economy and an intense subsidence, have left only few dune ridges residual still active. In this work three different foredune ridges, along the Ravenna coast, have been studied with Laser Scanner technology. This research didn’t limit to analyze volume or spatial difference, but try also to find new ways and new features to monitor this environment. Moreover the author planned a series of test to validate data from Terrestrial Laser Scanner (TLS), with the additional aim of finalize a methodology to test 3D survey accuracy. Data acquired by TLS were then applied on one hand to test some brand new applications, such as Digital Shore Line Analysis System (DSAS) and Computational Fluid Dynamics (CFD), to prove their efficacy in this field; on the other hand the author used TLS data to find any correlation with meteorological indexes (Forcing Factors), linked to sea and wind (Fryberger's method) applying statistical tools, such as the Principal Component Analysis (PCA).
Resumo:
Laser Shock Peening (LSP) is a surface enhancement treatment which induces a significant layer of beneficial compressive residual stresses up to several mm underneath the surface of metal components in order to improve the detrimental effects of crack growth behavior rate in it. The aim of this thesis is to predict the crack growth behavior of thin Aluminum specimens with one or more LSP stripes defining a compressive residual stress area. The LSP treatment has been applied as crack retardation stripes perpendicular to the crack growing direction, with the objective of slowing down the crack when approaching the LSP patterns. Different finite element approaches have been implemented to predict the residual stress field left by the laser treatment, mostly by means of the commercial software Abaqus/Explicit. The Afgrow software has been used to predict the crack growth behavior of the component following the laser peening treatment and to detect the improvement in fatigue life comparing to the specimen baseline. Furthermore, an analytical model has been implemented on the Matlab software to make more accurate predictions on fatigue life of the treated components. An educational internship at the Research and Technologies Germany- Hamburg department of Airbus helped to achieve knowledge and experience to write this thesis. The main tasks of the thesis are the following: -To up to date Literature Survey related to laser shock peening in metallic structures -To validate the FE models developed against experimental measurements at coupon level -To develop design of crack growth slow down in centered and edge cracked tension specimens based on residual stress engineering approach using laser peened patterns transversal to the crack path -To predict crack growth behavior of thin aluminum panels -To validate numerical and analytical results by means of experimental tests.
Resumo:
This thesis work has been carried out during the Erasmus exchange period at the “Université Paris 6 – Pierre et Marie Curie”, in the “Edifices PolyMétalliques – EPOM” team, leaded by Prof. Anna Proust, belonging to the “Institut Parisien de Chimie Moléculaire”, under the supervision of Dr. Guillaume Izzet and Dr. Geoffroy Guillemot. The redox properties of functionalized Keggin and Dawson POMs have been exploited in photochemical, catalytic and reactivity tests. For the photochemical purposes, the selected POMs have been functionalized with different photoactive FGs, and the resulting products have been characterized by CV analyses, luminescence tests and UV-Vis analyses. In future, these materials will be tested for hydrogen photoproduction and polymerization of photoactive films. For the catalytic purposes, POMs have been firstly functionalized with silanol moieties, to obtain original coordination sites, and then post-functionalized with TMs such as V, Ti and Zr in their highest oxidation states. In this way, the catalytic properties of TMs were coupled to the redox properties of POM frameworks. The redox behavior of some of these hybrids has been studied by spectro-electrochemical and EPR methods. Catalytic epoxidation tests have been carried out on allylic alcohols and n-olefins, employing different catalysts and variable amounts of them. The performances of POM-V hybrids have been compared to those of VO(iPrO)3. Finally, reactivity of POM-VIII hybrids has been studied, using styrene oxide and ethyl-2-diazoacetate as substrates. All the obtained products have been analyzed via NMR techniques. Cyclovoltammetric analyses have been carried out in order to determine the redox behavior of selected hybrids.
Resumo:
Epoxy resins are very diffused materials due to their high added value deriving from high mechanical proprieties and thermal resistance; for this reason they are widely used both as metallic coatings in aerospace and in food packaging. However, their preparation uses dangerous reagents like bisphenol A and epichlorohydrin respectively classified as suspected of causing damage to fertility and to be carcinogen. Therefore, to satisfy the ever-growing attention to environmental problems and human safeness, we are considering alternative “green” processes through the use of reagents obtained as by-products from other processes and mild experimental conditions, and also economically sustainable and attractive for industries. Following previous results, we carried out the reaction leading to the formation of diphenolic acid (DPA), its allylation and the following epoxidation of the double bonds, all in aqueous solvent. In a second step the obtained product were cross-linked at high temperature with and without the use of hardeners. Then, on the obtained resin, some tests were performed like release in aqueous solution, scratch test and DSC analysis.
Resumo:
Patienten, die an Osteosarkom leiden werden derzeit mit intravenös applizierten krebstherapeutischen Mitteln nach Tumorresektion behandelt, was oftmals mit schweren Nebenwirkungen und einem verzögerten Knochenheilungsprozess einhergeht. Darüber hinaus treten vermehrt Rezidive aufgrund von verbleibenden neoplastischen Zellen an der Tumorresektionsstelle auf. Erfolgreiche Knochenregeneration und die Kontrolle von den im Gewebe verbleibenden Krebszellen stellt eine Herausforderung für das Tissue Engineering nach Knochenverlust durch Tumorentfernung dar. In dieser Hinsicht scheint der Einsatz von Hydroxyapatit als Knochenersatzmaterial in Kombination mit Cyclodextrin als Medikamententräger, vielversprechend. Chemotherapeutika können an Biomaterial gebunden und direkt am Tumorbett über einen längeren Zeitraum freigesetzt werden, um verbliebene neoplastische Zellen zu eliminieren. Lokal applizierte Chemotherapie hat diverse Vorteile, einschließlich der direkten zytotoxischen Auswirkung auf lokale Zellen, sowie die Reduzierung schwerer Nebenwirkungen. Diese Studie wurde durchgeführt, um die Funktionsfähigkeit eines solchen Arzneimittelabgabesystems zu bewerten und um Strategien im Bereich des Tissue Engineerings zu entwickeln, die den Knochenheilungsprozess und im speziellen die Vaskularisierung fördern sollen. Die Ergebnisse zeigen, dass nicht nur Krebszellen von der chemotherapeutischen Behandlung betroffen sind. Primäre Endothelzellen wie zum Beispiel HUVEC zeigten eine hohe Sensibilität Cisplatin und Doxorubicin gegenüber. Beide Medikamente lösten in HUVEC ein tumor-unterdrückendes Signal durch die Hochregulation von p53 und p21 aus. Zudem scheint Hypoxie einen krebstherapeutischen Einfluss zu haben, da die Behandlung sensitiver HUVEC mit Hypoxie die Zellen vor Zytotoxizität schützte. Der chemo-protektive Effekt schien deutlich weniger auf Krebszelllinien zu wirken. Diese Resultate könnten eine mögliche chemotherapeutische Strategie darstellen, um den Effekt eines zielgerichteten Medikamenteneinsatzes auf Krebszellen zu verbessern unter gleichzeitiger Schonung gesunder Zellen. Eine erfolgreiche Integration eines Systems, das Arzneimittel abgibt, kombiniert mit einem Biomaterial zur Stabilisierung und Regeneration, könnte gesunden Endothelzellen die Möglichkeit bieten zu proliferieren und Blutgefäße zu bilden, während verbleibende Krebszellen eliminiert werden. Da der Prozess der Knochengeweberemodellierung mit einer starken Beeinträchtigung der Lebensqualität des Patienten einhergeht, ist die Beschleunigung des postoperativen Heilungsprozesses eines der Ziele des Tissue Engineerings. Die Bildung von Blutgefäßen ist unabdingbar für eine erfolgreiche Integration eines Knochentransplantats in das Gewebe. Daher ist ein umfangreich ausgebildetes Blutgefäßsystem für einen verbesserten Heilungsprozess während der klinischen Anwendung wünschenswert. Frühere Experimente zeigen, dass sich die Anwendung von Ko-Kulturen aus humanen primären Osteoblasten (pOB) und humanen outgrowth endothelial cells (OEC) im Hinblick auf die Bildung stabiler gefäßähnlicher Strukturen in vitro, die auch effizient in das mikrovaskuläre System in vivo integriert werden konnten, als erfolgreich erweisen. Dieser Ansatz könnte genutzt werden, um prä-vaskularisierte Konstrukte herzustellen, die den Knochenheilungsprozess nach der Implantation fördern. Zusätzlich repräsentiert das Ko-Kultursystem ein exzellentes in vitro Model, um Faktoren, welche stark in den Prozess der Knochenheilung und Angiogenese eingebunden sind, zu identifizieren und zu analysieren. Es ist bekannt, dass Makrophagen eine maßgebliche Rolle in der inflammatorisch-induzierten Angiogenese spielen. In diesem Zusammenhang hebt diese Studie den positiven Einfluss THP-1 abgeleiteter Makrophagen in Ko-Kultur mit pOB und OEC hervor. Die Ergebnisse zeigten, dass die Anwendung von Makrophagen als inflammatorischer Stimulus im bereits etablierten Ko-Kultursystem zu einer pro-angiogenen Aktivierung der OEC führte, was in einer signifikant erhöhten Bildung blutgefäßähnlicher Strukturen in vitro resultierte. Außerdem zeigte die Analyse von Faktoren, die in der durch Entzündung hervorgerufenen Angiogenese eine wichtige Rolle spielen, eine deutliche Hochregulation von VEGF, inflammatorischer Zytokine und Adhäsionsmoleküle, die letztlich zu einer verstärkten Vaskularisierung beitragen. Diese Resultate werden dem Einfluss von Makrophagen zugeschrieben und könnten zukünftig im Tissue Engineering eingesetzt werden, um den Heilungsprozess zu beschleunigen und damit die klinische Situation von Patienten zu verbessern. Darüber hinaus könnte die Kombination der auf Ko-Kulturen basierenden Ansätze für das Knochen Tissue Engineering mit einem biomaterial-basierenden Arzneimittelabgabesystem zum klinischen Einsatz kommen, der die Eliminierung verbliebener Krebszellen mit der Förderung der Knochenregeneration verbindet.