839 resultados para Random utility
Resumo:
Under a two-level hierarchical model, suppose that the distribution of the random parameter is known or can be estimated well. Data are generated via a fixed, but unobservable realization of this parameter. In this paper, we derive the smallest confidence region of the random parameter under a joint Bayesian/frequentist paradigm. On average this optimal region can be much smaller than the corresponding Bayesian highest posterior density region. The new estimation procedure is appealing when one deals with data generated under a highly parallel structure, for example, data from a trial with a large number of clinical centers involved or genome-wide gene-expession data for estimating individual gene- or center-specific parameters simultaneously. The new proposal is illustrated with a typical microarray data set and its performance is examined via a small simulation study.
Nonparametric Inference Procedure For Percentiles of the Random Effect Distribution in Meta Analysis
Resumo:
In evaluating the accuracy of diagnosis tests, it is common to apply two imperfect tests jointly or sequentially to a study population. In a recent meta-analysis of the accuracy of microsatellite instability testing (MSI) and traditional mutation analysis (MUT) in predicting germline mutations of the mismatch repair (MMR) genes, a Bayesian approach (Chen, Watson, and Parmigiani 2005) was proposed to handle missing data resulting from partial testing and the lack of a gold standard. In this paper, we demonstrate an improved estimation of the sensitivities and specificities of MSI and MUT by using a nonlinear mixed model and a Bayesian hierarchical model, both of which account for the heterogeneity across studies through study-specific random effects. The methods can be used to estimate the accuracy of two imperfect diagnostic tests in other meta-analyses when the prevalence of disease, the sensitivities and/or the specificities of diagnostic tests are heterogeneous among studies. Furthermore, simulation studies have demonstrated the importance of carefully selecting appropriate random effects on the estimation of diagnostic accuracy measurements in this scenario.
Resumo:
PURPOSE: To retrospectively determine the sensitivity of ovarian artery (OA) visualization at aortography performed after uterine fibroid embolization (UFE) and, using OA arteriography as the reference standard, compare the extent of arterial flow to the uterus at aortography with selective ovarian arteriography, to establish the utility of aortography and ovarian arteriography in the routine practice of UFE. MATERIALS AND METHODS: This study received institutional review board approval with waiver of informed consent and was HIPAA compliant. Retrospective review of 1129 consecutive UFE patients (1072 with aortograms, 57 excluded; mean age, 44 years; range, 21-60 years) was performed to identify all visible OAs. Visible OAs were independently graded by two interventional radiologists according to extent of pelvic arterial flow. If selective arteriography was performed, a second grade was assigned based on assessment of the selective study. Descriptive and summary statistics were used for assessment by the senior observer, and interobserver variability was determined. RESULTS: Of 1072 UFE patients, 184 (17.2%) had at least one visible OA. Ten (0.8%) patients were identified at aortography with collateral OA supply to more than 10% of the uterus. In total, 251 OAs were visualized, and 157 of these were further evaluated with selective study. Sixty-two (5.8%) patients were identified at selective arteriography as having collateral OA supply. The sensitivity of aortography was approximately 18%. Interobserver concordance was high (kappa values of 0.81 and 0.90 for aortography and selective study, respectively), but not perfect. CONCLUSION: Aortography rarely helps identify patients with substantial residual OA supply to the uterus and is a poor predictor of the extent of that supply, and thus may be of limited utility in routine UFE.
Resumo:
BACKGROUND: There is little evidence on differences across health care systems in choice and outcome of the treatment of chronic low back pain (CLBP) with spinal surgery and conservative treatment as the main options. At least six randomised controlled trials comparing these two options have been performed; they show conflicting results without clear-cut evidence for superior effectiveness of any of the evaluated interventions and could not address whether treatment effect varied across patient subgroups. Cost-utility analyses display inconsistent results when comparing surgical and conservative treatment of CLBP. Due to its higher feasibility, we chose to conduct a prospective observational cohort study. METHODS: This study aims to examine if1. Differences across health care systems result in different treatment outcomes of surgical and conservative treatment of CLBP2. Patient characteristics (work-related, psychological factors, etc.) and co-interventions (physiotherapy, cognitive behavioural therapy, return-to-work programs, etc.) modify the outcome of treatment for CLBP3. Cost-utility in terms of quality-adjusted life years differs between surgical and conservative treatment of CLBP.This study will recruit 1000 patients from orthopaedic spine units, rehabilitation centres, and pain clinics in Switzerland and New Zealand. Effectiveness will be measured by the Oswestry Disability Index (ODI) at baseline and after six months. The change in ODI will be the primary endpoint of this study.Multiple linear regression models will be used, with the change in ODI from baseline to six months as the dependent variable and the type of health care system, type of treatment, patient characteristics, and co-interventions as independent variables. Interactions will be incorporated between type of treatment and different co-interventions and patient characteristics. Cost-utility will be measured with an index based on EQol-5D in combination with cost data. CONCLUSION: This study will provide evidence if differences across health care systems in the outcome of treatment of CLBP exist. It will classify patients with CLBP into different clinical subgroups and help to identify specific target groups who might benefit from specific surgical or conservative interventions. Furthermore, cost-utility differences will be identified for different groups of patients with CLBP. Main results of this study should be replicated in future studies on CLBP.
Resumo:
The Zagros oak forests in Western Iran are critically important to the sustainability of the region. These forests have undergone dramatic declines in recent decades. We evaluated the utility of the non-parametric Random Forest classification algorithm for land cover classification of Zagros landscapes, and selected the best spatial and spectral predictive variables. The algorithm resulted in high overall classification accuracies (>85%) and also equivalent classification accuracies for the datasets from the three different sensors. We evaluated the associations between trends in forest area and structure with trends in socioeconomic and climatic conditions, to identify the most likely driving forces creating deforestation and landscape structure change. We used available socioeconomic (urban and rural population, and rural income), and climatic (mean annual rainfall and mean annual temperature) data for two provinces in northern Zagros. The most correlated driving force of forest area loss was urban population, and climatic variables to a lesser extent. Landscape structure changes were more closely associated with rural population. We examined the effects of scale changes on the results from spatial pattern analysis. We assessed the impacts of eight years of protection in a protected area in northern Zagros at two different scales (both grain and extent). The effects of protection on the amount and structure of forests was scale dependent. We evaluated the nature and magnitude of changes in forest area and structure over the entire Zagros region from 1972 to 2009. We divided the Zagros region in 167 Landscape Units and developed two measures— Deforestation Sensitivity (DS) and Connectivity Sensitivity (CS) — for each landscape unit as the percent of the time steps that forest area and ECA experienced a decrease of greater than 10% in either measure. A considerable loss in forest area and connectivity was detected, but no sudden (nonlinear) changes were detected at the spatial and temporal scale of the study. Connectivity loss occurred more rapidly than forest loss due to the loss of connecting patches. More connectivity was lost in southern Zagros due to climatic differences and different forms of traditional land use.
Resumo:
BACKGROUND: The aim of this study was to determine the performance of a new, 3D-monitor based, objective stereotest in children under the age of four. METHODS: Random-dot circles (diameter 10 cm, crossed, disparity of 0.34 degrees) randomly changing their position were presented on an 3D-monitor while eye movements were monitored by infrared photo-oculography. If > or = 3 consecutive stimuli were seen, a positive response was assumed. One hundred thirty-four normal children aged 2 months to 4 years (average 17+/-15.3 months) were examined. RESULTS: Below the age of 12 months, we were not able to obtain a response to the 3D stimulus. For older children the following rates of positive responses were found: 12-18 months 25%, 18-24 months 10%, 24-30 months 16%, 30-36 months 57%, 36-42 months 100%, and 42-48 months 91%. Multiple linear logistic regression showed a significant influence on stimulus recognition of the explanatory variables age (p<0.00001) and child cooperation (p<0.001), but not of gender (p>0.1). CONCLUSIONS: This 3D-monitor based stereotest allows an objective measurement of random-dot stereopsis in younger children. It might open new ways to screen children for visual abnormalities and to study the development of stereovision. However, the current experimental setting does not allow determining random-dot stereopsis in children younger than 12 months.