The Optimal Confidence Region for a Random Parameter
Data(s) |
22/07/2004
|
---|---|
Resumo |
Under a two-level hierarchical model, suppose that the distribution of the random parameter is known or can be estimated well. Data are generated via a fixed, but unobservable realization of this parameter. In this paper, we derive the smallest confidence region of the random parameter under a joint Bayesian/frequentist paradigm. On average this optimal region can be much smaller than the corresponding Bayesian highest posterior density region. The new estimation procedure is appealing when one deals with data generated under a highly parallel structure, for example, data from a trial with a large number of clinical centers involved or genome-wide gene-expession data for estimating individual gene- or center-specific parameters simultaneously. The new proposal is illustrated with a typical microarray data set and its performance is examined via a small simulation study. |
Formato |
application/pdf |
Identificador |
http://biostats.bepress.com/harvardbiostat/paper13 http://biostats.bepress.com/cgi/viewcontent.cgi?article=1013&context=harvardbiostat |
Publicador |
Collection of Biostatistics Research Archive |
Fonte |
Harvard University Biostatistics Working Paper Series |
Palavras-Chave | #Empirical Bayes #Gene-expession #Global Clinical Trials #Hierarchical Model #Highest Posterior Density Region #Clinical Trials #Microarrays #Statistical Methodology #Statistical Models #Statistical Theory |
Tipo |
text |