906 resultados para Pseudorandom permutation ensemble
Resumo:
A jazz piece for solo piano and/or jazz ensemble. This piece combines traditional and contemporary approaches. It is primarily old style swing but incorporates many modern harmonic techniques/devices, as evidenced in the score, such as: the use of upper structure triads, drop two voicing techniques, and voicing in fourths.
Resumo:
The artistic play of light seen on a pyramid in some Mayan ruins located in Cancun, Mexico provided the inspiration for Vision of Equinox. On both the spring and autumn equinox days, the sunlight projected on the pyramid forms a shape which looks like a serpent moving on the stairway of the pyramid. Vision of Equinox was composed with an image of light as the model for the artistic transfiguration of sound. The light image of sound changes its shape in each stage of the piece, using the orchestra in different ways - sometimes like a chamber ensemble, sometimes like one big instrument. The image of light casting on a pyramid is expressed by descending melodic lines that can be heard several times in the piece. At the final climax of the work, a complete and embodied artistic figure is formed and stated, expressing the appearance of the Mayan god Quetzalcoatl, the serpent, in my own imagination. The light and shadow which comprise this pyramid art are treated as two contrasting elements in my composition and become the two main motives in this piece. To express these two contrasting elements, I picked the numbers "5" and "2," and used them as "key numbers" in this piece. As a result, the intervals of a fifth and a second (sometimes inverted as a seventh) are the two main intervals used in the structure. The interval of a fifth was taken into account for the construction of the pyramid, which has five points of contact. The interval of a second was selected as a contrasting sonority to the fifth. Further, the numbers "5" and "2" are used as the number of notes which form the main motives in this piece; quintuplets are used throughout this piece, and the short motive made by two sixteenth notes is used as one of the main motives in this piece. Moreover, the shape of the pyramid provided a concept of symmetry, which is expressed by the setting of a central point of the music (pitch center) as well as the use of retrograde and inversion in this piece.
Resumo:
The objective of spatial downscaling strategies is to increase the information content of coarse datasets at smaller scales. In the case of quantitative precipitation estimation (QPE) for hydrological applications, the goal is to close the scale gap between the spatial resolution of coarse datasets (e.g., gridded satellite precipitation products at resolution L × L) and the high resolution (l × l; L»l) necessary to capture the spatial features that determine spatial variability of water flows and water stores in the landscape. In essence, the downscaling process consists of weaving subgrid-scale heterogeneity over a desired range of wavelengths in the original field. The defining question is, which properties, statistical and otherwise, of the target field (the known observable at the desired spatial resolution) should be matched, with the caveat that downscaling methods be as a general as possible and therefore ideally without case-specific constraints and/or calibration requirements? Here, the attention is focused on two simple fractal downscaling methods using iterated functions systems (IFS) and fractal Brownian surfaces (FBS) that meet this requirement. The two methods were applied to disaggregate spatially 27 summertime convective storms in the central United States during 2007 at three consecutive times (1800, 2100, and 0000 UTC, thus 81 fields overall) from the Tropical Rainfall Measuring Mission (TRMM) version 6 (V6) 3B42 precipitation product (~25-km grid spacing) to the same resolution as the NCEP stage IV products (~4-km grid spacing). Results from bilinear interpolation are used as the control. A fundamental distinction between IFS and FBS is that the latter implies a distribution of downscaled fields and thus an ensemble solution, whereas the former provides a single solution. The downscaling effectiveness is assessed using fractal measures (the spectral exponent β, fractal dimension D, Hurst coefficient H, and roughness amplitude R) and traditional operational scores statistics scores [false alarm rate (FR), probability of detection (PD), threat score (TS), and Heidke skill score (HSS)], as well as bias and the root-mean-square error (RMSE). The results show that both IFS and FBS fractal interpolation perform well with regard to operational skill scores, and they meet the additional requirement of generating structurally consistent fields. Furthermore, confidence intervals can be directly generated from the FBS ensemble. The results were used to diagnose errors relevant for hydrometeorological applications, in particular a spatial displacement with characteristic length of at least 50 km (2500 km2) in the location of peak rainfall intensities for the cases studied. © 2010 American Meteorological Society.
Resumo:
We propose a new approach to the fermion sign problem in systems where there is a coupling U such that when it is infinite the fermions are paired into bosons, and there is no fermion permutation sign to worry about. We argue that as U becomes finite, fermions are liberated but are naturally confined to regions which we refer to as fermion bags. The fermion sign problem is then confined to these bags and may be solved using the determinantal trick. In the parameter regime where the fermion bags are small and their typical size does not grow with the system size, construction of Monte Carlo methods that are far more efficient than conventional algorithms should be possible. In the region where the fermion bags grow with system size, the fermion bag approach continues to provide an alternative approach to the problem but may lose its main advantage in terms of efficiency. The fermion bag approach also provides new insights and solutions to sign problems. A natural solution to the "silver blaze problem" also emerges. Using the three-dimensional massless lattice Thirring model as an example, we introduce the fermion bag approach and demonstrate some of these features. We compute the critical exponents at the quantum phase transition and find ν=0.87(2) and η=0.62(2). © 2010 The American Physical Society.
Resumo:
BACKGROUND: Many analyses of microarray association studies involve permutation, bootstrap resampling and cross-validation, that are ideally formulated as embarrassingly parallel computing problems. Given that these analyses are computationally intensive, scalable approaches that can take advantage of multi-core processor systems need to be developed. RESULTS: We have developed a CUDA based implementation, permGPU, that employs graphics processing units in microarray association studies. We illustrate the performance and applicability of permGPU within the context of permutation resampling for a number of test statistics. An extensive simulation study demonstrates a dramatic increase in performance when using permGPU on an NVIDIA GTX 280 card compared to an optimized C/C++ solution running on a conventional Linux server. CONCLUSIONS: permGPU is available as an open-source stand-alone application and as an extension package for the R statistical environment. It provides a dramatic increase in performance for permutation resampling analysis in the context of microarray association studies. The current version offers six test statistics for carrying out permutation resampling analyses for binary, quantitative and censored time-to-event traits.
Resumo:
The early music revival of the late twentieth century revolutionized music with the birth of historically lnformed performance. With this revolution came a stereotype of the "early music singing voice" as small, bright, straight-toned, and unfortunately, often inferior techrucally to the mainstream opera singer. An assessment of the validity of this stereotype was made though readings of treatises and modern manuals of performance practice, and through listening to recordings. Sources on ornamentation, recitative, dance rhythm, and baroque gesture were examined, resulting in the finding that these issues are far more important to historical accuracy than are voice timbre and size. This dissertation is comprised of three historically informed performances intended to satisfy both the early music specialist and the mainstream voice teacher. Program One (May 15, 2004) is a performance of The "Peasant" Cantata, BWV 212, by J.S. Bach, with The Bach Sinfonia at the Washington Conservatory of Music. Program Two (January 29, 2005) is the role of Eurilla in a staged production of Antonio Vivaldi's serenata, Eurilla e Alcindo. The performance is a collaboration with the Baltimore-based ensemble, La Rocinante, and is conducted from the keyboard by Joseph Gascho. Program Three (March 14, 2005) is a solo recital entitled, Fairest Isle: Music of Baroque London. All three programs are documented in a digital audio format available on compact disc, with accompanying programs and notes also available in digital format.
Resumo:
The ability to manipulate small fluid droplets, colloidal particles and single cells with the precision and parallelization of modern-day computer hardware has profound applications for biochemical detection, gene sequencing, chemical synthesis and highly parallel analysis of single cells. Drawing inspiration from general circuit theory and magnetic bubble technology, here we demonstrate a class of integrated circuits for executing sequential and parallel, timed operations on an ensemble of single particles and cells. The integrated circuits are constructed from lithographically defined, overlaid patterns of magnetic film and current lines. The magnetic patterns passively control particles similar to electrical conductors, diodes and capacitors. The current lines actively switch particles between different tracks similar to gated electrical transistors. When combined into arrays and driven by a rotating magnetic field clock, these integrated circuits have general multiplexing properties and enable the precise control of magnetizable objects.
Resumo:
Proteins are essential components of cells and are crucial for catalyzing reactions, signaling, recognition, motility, recycling, and structural stability. This diversity of function suggests that nature is only scratching the surface of protein functional space. Protein function is determined by structure, which in turn is determined predominantly by amino acid sequence. Protein design aims to explore protein sequence and conformational space to design novel proteins with new or improved function. The vast number of possible protein sequences makes exploring the space a challenging problem.
Computational structure-based protein design (CSPD) allows for the rational design of proteins. Because of the large search space, CSPD methods must balance search accuracy and modeling simplifications. We have developed algorithms that allow for the accurate and efficient search of protein conformational space. Specifically, we focus on algorithms that maintain provability, account for protein flexibility, and use ensemble-based rankings. We present several novel algorithms for incorporating improved flexibility into CSPD with continuous rotamers. We applied these algorithms to two biomedically important design problems. We designed peptide inhibitors of the cystic fibrosis agonist CAL that were able to restore function of the vital cystic fibrosis protein CFTR. We also designed improved HIV antibodies and nanobodies to combat HIV infections.
Resumo:
© 2014, Springer-Verlag Berlin Heidelberg.This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical–extratropical teleconnection pattern, which modulates the circulation along the NASH western ridge in the WRF simulations and contributes to the modeled precipitation biases over the SE US. In conclusion, our study demonstrates that the NASH western ridge is an important factor responsible for the RCM skill in simulating SE US summer precipitation. Furthermore, the improvements in the PBL parameterizations for the Gulf of Mexico might help advance RCM skill in representing the NASH western ridge circulation and summer precipitation over the SE US.
Resumo:
This study is a compilation and compendium of information on the oud, the most important instrument in Arabic classical music. It has grown out of my own long-time involvement in studying and playing the oud, and in particular out of my interest in the lack of sources and knowledge available to the vast majority of oud players and researchers, as well as for the readers. My own path started from an intensive study of the oud, which included exposure to several treaties; some housed in museums around the globe, and some only available in the Arabic language. The study combines archival research (including Arabic poetry and pre-Islamic Era and medieval treaties), symbolism, new archaeological discoveries, field interviews, and analysis of existing scholarship, and draws on my professional performance experience for detailed stylistic analysis of the oud's performance practice and its historical development. The study consists of participant observation, personal performance, and interviews conducted in person, via telephone, and/or via e-mail, according to the choice of the performers. The performers have been selected from networks of musicians who perform regularly at lounges, concert halls, and private events. These performers have been chosen according to their musical knowledge, technical skill, experience, and activity in Arabic music and oud performance. Chapter one deals with the purpose of this study and the methods of investigation, as well as giving a brief overview of the history of the oud. In addition, there will be an introduction to the Arabic musical system (mâqâm), which is primarily based on the mechanics and sound production of the oud. Chapter two deals with the oud in Arabic sources: the first source is Arabic poetry in the pre-Islamic Era. The second source is Arabic poetry in the medieval era, in which I found a significant number of poets who allude to the oud, providing accurate descriptions of the player, singers, and the scenes within the contexts of oud performance. The third source is the Arab scholars' intensive treatises with meticulous accounts of the instrument's apparatii, including descriptions and measurements of the parts, strings, and tuning. While chapter three deals with the classification, the development of the oud, chapter four deals with topics such as: the symbolism of the oud and its relation to cosmology, astronomy, mathematics and anatomy. In most of the pertinent Arabic writings, philosophers mention a significant correlation between the oud and the other sciences. Chapter five deals with recreating the performance practice of the oud. A case study of the oud performers focuses on their style, technique, training, and personal experiences. Topics such as improvisation and ornamentation, the oud in the Arabic musical ensemble, the social uses and functions, and gender in musical performance practices will be included in detailed analysis. Other important topics will be analyzed such as traditional vs. modern technique, and the repertoire of the oud. Specifically, in regard to technique, the study outline the style of the music, the role of the oud in Arabic ensembles, the function of the oud in music composition, and the form of the ensembles in Arabic performance and practice.
Resumo:
Geospatial modeling is one of the most powerful tools available to conservation biologists for estimating current species ranges of Earth's biodiversity. Now, with the advantage of predictive climate models, these methods can be deployed for understanding future impacts on threatened biota. Here, we employ predictive modeling under a conservative estimate of future climate change to examine impacts on the future abundance and geographic distributions of Malagasy lemurs. Using distribution data from the primary literature, we employed ensemble species distribution models and geospatial analyses to predict future changes in species distributions. Current species distribution models (SDMs) were created within the BIOMOD2 framework that capitalizes on ten widely used modeling techniques. Future and current SDMs were then subtracted from each other, and areas of contraction, expansion, and stability were calculated. Model overprediction is a common issue associated Malagasy taxa. Accordingly, we introduce novel methods for incorporating biological data on dispersal potential to better inform the selection of pseudo-absence points. This study predicts that 60% of the 57 species examined will experience a considerable range of reductions in the next seventy years entirely due to future climate change. Of these species, range sizes are predicted to decrease by an average of 59.6%. Nine lemur species (16%) are predicted to expand their ranges, and 13 species (22.8%) distribution sizes were predicted to be stable through time. Species ranges will experience severe shifts, typically contractions, and for the majority of lemur species, geographic distributions will be considerably altered. We identify three areas in dire need of protection, concluding that strategically managed forest corridors must be a key component of lemur and other biodiversity conservation strategies. This recommendation is all the more urgent given that the results presented here do not take into account patterns of ongoing habitat destruction relating to human activities.
Resumo:
The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.
Resumo:
The purpose of this study is to explore high school students' perceptions of their choral experiences, providing an understanding of students' ongoing perspectives of choral experience. Specifically, how have these experiences influenced the formation of their musical identities as members of a choral ensemble? The researcher collected data from the three participants during a full school year. The participants were current students in the researcher's advanced choral ensemble. Through axial coding, three themes emerged: musical interpretation, attitude, and group efficacy. The study revealed that experienced choral students have well-informed musical perspectives that influence their choral experiences. Implications for music education include using students' perspectives for creating rehearsal strategies, planning and programming performances, and fostering a nurturing learning atmosphere. Suggestions for further research include comparing experienced students to non-experienced students, comparing ensembles with student-chosen repertoire to those with director-chosen repertoire, and further examining the impact of choral experience on musical identity.
Resumo:
The solo trombone recital was once a rare musical event, but in recent years professional and amateur trombonists frequently present solo performances. The trombone has been around since the latter half of the 15th century and there is a wealth of ensemble repertoire, written for the instrument; however, there is no corresponding corpus of solo works. A small body of solo works does exist, from baroque sonatas and the alto trombone concertos of Leopold Mozart and Georg Wagenseil, to the romantic works by Ferdinand David and Nicolai Rimsky-Korsakov. This repertoire is small in number and a modern trombonist often has to resort to orchestral reductions and arrangements for modern performance in a solo recital setting. The trombone came into its own as a solo instrument in the 20th century and it is in this era where the bulk of a modern trombonist's repertoire resides. While there is now no shortage of music to choose from, presenting a diverse, yet musically cohesive recital remains a challenge though many interesting musical opportunities can arise to meet this challenge. While the piano is an extremely versatile instrument, pairing trombone with percussion opens up possibilities that are absent from the more traditional piano pairing. Percussion instruments can offer an almost unlimited variation of timbre and dynamics to complement the trombone. Dynamic range of the trombone must be considered as the instrument has the ability to play at the extremes of the dynamic range. Percussion instruments can match the trombone in these extremes. When presenting a recital of 20th and 21st century music, using timbre and dynamic range as selection criteria when planning the program are effective ways to bring a unique and intense musical experience to the audience. In this paper, the two considerations of dynamics and timbre will be explored and the need for a dissertation recital project will be explained.
Resumo:
Throughout his long and industrious lifetime, Camille Saint-Saens (1835-1921) devoted himself unconditionally to music both as a composer and a performer. Saint-Saens was a self-described traditionalist and musical purist, yet his works are distinctly expressive and imaginative, and they reflect the composer's own unique musical language which incorporates recognizably modem traits such as chromaticism and frequent modulation. As a performer, Saint-Saens preferred to premiere his own works and often included his chamber music in his concert programs. Regarded primarily as a symphonic composer in the present day, however, his extensive and varied collection of chamber music works is sadly neglected. Six varied small-ensemble works with piano from his chamber music repertoire have been selected for study and recording for this project: Piano Trio No. 1 in F Major, Op. 18 (1864); Sonata for Cello and Piano No. 1 inC Minor, Op. 32 (1872); two pieces for two pianos, Le Rouet d'Omphale (The Spinning Wheel ofOmphale), Op. 31 (1871) and Phaeton, Op. 39 (1874); piano duet Konig Harald Haifagar (King Harald Haarfager), Op. 59 (1880); and a wind quartet, Caprice sur des airs Danois et Russes (Caprice on Danish and Russian Airs) for Flute, Oboe, Clarinet and Piano, Op. 79 (1887). Analyses of the forms and harmonic structures of these compositions will be included in this dissertation paper as well as studies from the viewpoint of Saint-Saens' compositional style, ensemble characteristics, and writing for the piano. The recordings for this project were made in four sessions in LeFrak Concert Hall at Queens College, the City University of New York. On September 24, 2003, Op. 31, Op. 39 and Op. 59 were recorded with Professor Morey Ritt, piano. On March 2, 2004, Op. 18 was recorded with Elena Rojas, violin, and Clare Liu, cello, and on March 15, 2004, Op. 32 was recorded, also with Ms. Liu. The Caprice, Op. 79 was recorded on June 27, 2008 with Laura Conwesser, flute; Randall Wolfgang, oboe; and Steve Hartman, clarinet. The recordings may be found on file in the library at the University of Maryland, College Park.