1000 resultados para Programación de ordenadores
Resumo:
Sabor, Software de Análisis de BOcinas y Reflectores, es una herramienta didáctica la cual es utilizada en los laboratorios de la escuela para realizar prácticas de la asignatura Antenas y Compatibilidad Electromagnética, esta herramienta da a los alumnos una visión gráfica de lo que se enseña en clase de teoría de lo que son los campos en las aperturas de los reflectores. El proyector pretende sustituir al primer Sabor , ya que se queda obsoleto debido al sistema operativo, ya que funciona solo para Windows XP y con ordenadores de 32 bits, y también realizar mejoras y corregir errores de la versión anterior. El proyecto se ha desarrollado en Matlab que es un software matemático con grandes ventajas en cuanto a cálculo, desarrollo gráfico, y a la creación de nuevos algoritmos en su propio lenguaje y además está disponible para las plataformas Unix, Windows, Mac OSX y GNU/Linux. El objetivo del proyecto ha sido implementar, al igual que las versiones anteriores, cinco tipos de reflectores, como son: Parabólico, Offset, Cassegrain y los dos Dobles Offset, Cassegrain y Gregorian, y han sido analizados con un alimentador ideal ,cos-q, y por último los resultados obtenidos se han comparado con las versiones anteriores de Sabor, como son Sabor 3.0 y el primer Sabor. El proyecto consta de partes muy bien diferencias como son : La interpretación correctas de las formulas que se han utilizado para la realización de este proyecto ,dichas formulas han sido las dadas por el proyecto fin de carrera titulado Sabor3.0 de Francisco Egea Castejón. GUIDE, the graphical user interface development environment, con el que se creó: GUI, graphical user interface, que es la parte de Matlab dedicada a crear interfaces de usuario , herramienta utilizada para crear nuestras distintas ventanas dedicadas para la obtención de datos para analizar los distintos reflectores y para mostrar por pantalla los distintos resultados. Programación Orientada a Objetos de Matlab y sus distintas propiedades como son la herencia lo cual es muy útil para ocupar menos memoria ya que con un único método podemos realizar distintos cálculos con los distintos reflectores, objetos, solo cambiando las propiedades de cada objeto Y por último ha sido la realización de validación de los resultados con la ayuda de las versiones anteriores de Sabor, que están detallados en el capítulo 5 y la unión con bocinas del proyecto fin de carrera Análisis de Bocinas en Matlab de Javier Montero. Por otra parte tenemos las mejoras realizadas a las antiguas versiones como son: realización de registros que el usuario puede guardar y cargar con las distintas variables, también se ha realizado un fichero .txt en el que consta la amplitud del campo con su respectiva theta para que el usuario pueda visualizarlo en cualquier plataforma gráfica de datos como por ejemplo exel. ABSTRACT. Sabor, Software de Análisis de BOcinas y Reflectores, is a teaching tool, which is used to do laboratory practice in the subject of Antennas y Compatibilidad Electromagnética, this tool gives students a graphic view of the knowledge that are given in theory class in regard to aperture field of reflectors. This project intend to replace the first Sabor, because it is outdated, due to the operating system, because Sabor works only with Widows XP and computer with 32 bits, and to make improves and correct errors that were detected in the last version of Sabor too. This project has been carried out in Matlab, which is a mathematical software with high-level language for numerical computation, visualization and application development, and furthermore it is available to different platforms such as Unix, Windows ,Mac OSX and GNU/Linux This project has focused on implementing, the same as last versions, five kind of reflectors, such as : Parabolic, Offset, Cassegrain and two offset dual reflector Cassegrain y Gregorian ,and these were analysed with a cos-q ideal feed, and finally the results were checked with the versions of Sabor, as well as Sabor 3.0 and the first Sabor. This project consist of four parts: The correct interpretation of the formulas , which were used to do this project, from the final project Sabor3.0 by Francisco Egea Castejón. GUIDE, the graphical user interface development environment, tool that was used to create : GUI, graphical user interface, part of Matlab dedicated to create user interface. Object Oriented Programming of Matlab and different properties like inheritance, that is very useful for saving memory space because with only one method we can analyse different kind of reflectors, object, only change the properties of the object. At finally, the results were contrasted with the results from the previous versions and the link reflectors with horns from the final project Análisis de Bocinas en Matlab by Javier Montero. On the other hand, we have the improvements such as: registers and .txt file. The registers are used by user to save and load different variables and .txt file is useful because it allows to the user plotting in different platforms for example exel.
Resumo:
Vivimos rodeados de tecnología. La irrupción de ordenadores, tablets y smartphones en la sociedad ha hecho que ésta cambie y ha conseguido que sean posibles nuevos métodos de enseñanza mediante el empleo de estos dispo sitivos. Entre los nuevos métodos de enseñanza aparece el uso de los videojuegos como medio de aprendizaje. Son videojuegos, que a diferencia de los videojuegos tradicionales, no buscan el entretenimiento del jugador sino formarle dejando la diversión en un segundo plano. Estos juegos no están destinados exclusivamente al campo de la educación. Instituciones como el ejército también hacen uso de ellos para preparar a sus tropas, e incluso los hospitales los utilizan como métodos de rehabilitación. El desarrollo de videojuegos puede realizarse con un mínimo de conocimiento en programación tanto a nivel individual o como en grupos reducidos. Esto es posible gracias a las facilidades que ofrecen los motores gráficos de hoy en día. Con este proyecto se quiso realizar un tutorial que facilite el diseño y desarrollo de videojuegos sobre una plataforma móvil, como es Android , de cara a su uso posterior en la creación de juegos serios. Para el desarrollo del tutorial se elaboró un videojuego de plataformas en avance 2D. ABSTRACT: We are surounded by technologies. As computers, tablets and smartphones have arisen, our society has chaned, making use of these new technological devices in teaching area. Videogames use arises as a new way of learning, so it complements the traditional methods of teaching. The main aim of serious videogames, in contrast to videogames which people usually buy in any store, is training instead of entertaining. Recreation is on a secondary plane. Serious games aren’t only designed for education but also for other institutions such as the army (to train the troops) and hospitals (as a rehabilitation method). Videogames development can be done by an individual on group of people if they have a bascis knowledge of programming. This is posible due to graphic motors have a lot of aids in the present. This project tries to make a tutorial that makes the design and development of serious games easier. A platform videogame in advance 2D has been made for the development of this tutorial.
Resumo:
En estos últimos años la curiosidad por el sector informático, y más específicamente en la programación, ha producido una gran demanda por los interesados en estas áreas. Esto ha provocado que el número de tutoriales y entrenadores haya aumentado de una forma considerable. Debido a esta gran demanda, ha surgido la idea de desarrollar una herramienta con la que poder gestionar tutoriales de programación con una aplicación de escritorio. La finalidad de este proyecto es poder crear tutoriales interactivos que permitan a los alumnos adquirir conocimientos de una forma sencilla y atractiva. Esto se consigue mediante la posibilidad de enriquecer el formato del texto al mostrar las explicaciones o los enunciados de las preguntas y añadir imágenes. Para evitar que sea un tutorial de sólo lectura, que resulta poco atractivo y no permite al estudiante evaluar los conocimientos adquiridos, con esta herramienta se podrán intercalar preguntas entre la teoría para enganchar más al alumno, y conseguir que el aprendizaje sea muy incremental, para no tener una cantidad abrumadora de información en poco tiempo. Con estos tutoriales el alumno podrá comprobar los conocimientos adquiridos gracias al seguimiento continuo. El estudiante, según lea la teoría y realice los ejercicios con grado de dificultad creciente, tendrá más capacidad para resolver ejercicios nuevos y prepararse para continuar el tutorial. El resultado de este proyecto ha sido una herramienta multiplataforma y con licencia abierta MIT, que puede ser descargada de https://github.com/Kherdu/TFG.
Resumo:
La Ciberseguridad es un campo que cada día está más presente en nuestra vida con el avance de la tecnología. Gobiernos, militares, corporaciones, instituciones financieras, hospitales y otros negocios recogen, procesan y almacenan una gran cantidad de información confidencial en sus ordenadores y transmiten estos datos a través de redes a otros ordenadores. Con el creciente volumen y la sofisticación de los Ciberataques, se requiere una atención continua para proteger los negocios sensibles y la información personal así como salvaguardar la seguridad nacional. En el futuro casi todo va a ser informático por lo que con el avance de la tecnología nuevas amenazas aparecen, más peligrosas y sofisticadas. El enfoque de nuestro proyecto es demostrar que con unos pocos conocimientos de redes, seguridad, computación en la nube y unas pocas líneas de código se puede implementar una potente herramienta de ataque que puede poner en peligro la integridad y confidencialidad de los usuarios e instituciones.
Resumo:
Manual de la Práctica 1. Programación y Simulación de un PLC
Resumo:
Ejercicios de la práctica 2. Programación con GRAFCET de un PLC.
Resumo:
Este artículo aborda la investigación, realizada con los estudiantes del primer semestre de la titulación de Informática de la Facultad de Filosofía, Letras y Ciencias de la Educación de la Universidad Central del Ecuador, cuyo propósito ha sido analizar el uso de entornos de programación no mediados simbólicamente como herramienta didáctica para el desarrollo del pensamiento computacional. Se pretende establecer las posibles ventajas de aplicar este tipo de entorno para que los estudiantes desarrollen habilidades del pensamiento computacional tales como la creatividad, modelación y abstracción, entre otras, consideradas relevantes dentro de la programación. La metodología en que se apoyó la investigación es mixta, con investigación de campo y documental a nivel descriptivo. Se utilizó como instrumento un cuestionario para la recolección de datos entre el alumnado de la titulación. Finalmente, con la información recopilada se procedió al procesamiento de datos a partir de la estadística descriptiva para, así, obtener resultados que permitiesen alcanzar las pertinentes conclusiones y recomendaciones.
Resumo:
Este estudio está basado en nuestras percepciones sobre el uso del ordenador e internet que los alumnos de Estudios Ingleses realizan en el aula durante las clases. Aunque hoy en día resulta extraño entrar en un aula sin ordenadores personales e incluso los alumnos muestran gran desconcierto cuando se les prohíbe su uso, no todo son ventajas a la hora de introducir las TICs en el aula, pues, como señalan Fried (2008) y Sana y otros (2012), con frecuencia los docentes nos enfrentamos a problemas de atención de los discentes en determinados momentos del proceso de enseñanza-aprendizaje. En general, parece que el alumnado está más motivado al realizar tareas prácticas con el ordenador; sin embargo, en la clase magistral interactiva los discentes tienden a realizar multitareas que incluyen uso de internet con fines no académicos (véase Wood y otros, 2011), lo cual repercute muy negativamente en su aprendizaje. Sugerimos aquí, por tanto, restringir el uso de ordenadores e internet a determinados momentos del proceso de enseñanza aprendizaje, es decir, a aquellos en los que el uso de las nuevas tecnologías favorece la motivación y el aprendizaje.
Resumo:
Durante los últimos años ha sido creciente el uso de las unidades de procesamiento gráfico, más conocidas como GPU (Graphic Processing Unit), en aplicaciones de propósito general, dejando a un lado el objetivo para el que fueron creadas y que no era otro que el renderizado de gráficos por computador. Este crecimiento se debe en parte a la evolución que han experimentado estos dispositivos durante este tiempo y que les ha dotado de gran potencia de cálculo, consiguiendo que su uso se extienda desde ordenadores personales a grandes cluster. Este hecho unido a la proliferación de sensores RGB-D de bajo coste ha hecho que crezca el número de aplicaciones de visión que hacen uso de esta tecnología para la resolución de problemas, así como también para el desarrollo de nuevas aplicaciones. Todas estas mejoras no solamente se han realizado en la parte hardware, es decir en los dispositivos, sino también en la parte software con la aparición de nuevas herramientas de desarrollo que facilitan la programación de estos dispositivos GPU. Este nuevo paradigma se acuñó como Computación de Propósito General sobre Unidades de Proceso Gráfico (General-Purpose computation on Graphics Processing Units, GPGPU). Los dispositivos GPU se clasifican en diferentes familias, en función de las distintas características hardware que poseen. Cada nueva familia que aparece incorpora nuevas mejoras tecnológicas que le permite conseguir mejor rendimiento que las anteriores. No obstante, para sacar un rendimiento óptimo a un dispositivo GPU es necesario configurarlo correctamente antes de usarlo. Esta configuración viene determinada por los valores asignados a una serie de parámetros del dispositivo. Por tanto, muchas de las implementaciones que hoy en día hacen uso de los dispositivos GPU para el registro denso de nubes de puntos 3D, podrían ver mejorado su rendimiento con una configuración óptima de dichos parámetros, en función del dispositivo utilizado. Es por ello que, ante la falta de un estudio detallado del grado de afectación de los parámetros GPU sobre el rendimiento final de una implementación, se consideró muy conveniente la realización de este estudio. Este estudio no sólo se realizó con distintas configuraciones de parámetros GPU, sino también con diferentes arquitecturas de dispositivos GPU. El objetivo de este estudio es proporcionar una herramienta de decisión que ayude a los desarrolladores a la hora implementar aplicaciones para dispositivos GPU. Uno de los campos de investigación en los que más prolifera el uso de estas tecnologías es el campo de la robótica ya que tradicionalmente en robótica, sobre todo en la robótica móvil, se utilizaban combinaciones de sensores de distinta naturaleza con un alto coste económico, como el láser, el sónar o el sensor de contacto, para obtener datos del entorno. Más tarde, estos datos eran utilizados en aplicaciones de visión por computador con un coste computacional muy alto. Todo este coste, tanto el económico de los sensores utilizados como el coste computacional, se ha visto reducido notablemente gracias a estas nuevas tecnologías. Dentro de las aplicaciones de visión por computador más utilizadas está el registro de nubes de puntos. Este proceso es, en general, la transformación de diferentes nubes de puntos a un sistema de coordenadas conocido. Los datos pueden proceder de fotografías, de diferentes sensores, etc. Se utiliza en diferentes campos como son la visión artificial, la imagen médica, el reconocimiento de objetos y el análisis de imágenes y datos de satélites. El registro se utiliza para poder comparar o integrar los datos obtenidos en diferentes mediciones. En este trabajo se realiza un repaso del estado del arte de los métodos de registro 3D. Al mismo tiempo, se presenta un profundo estudio sobre el método de registro 3D más utilizado, Iterative Closest Point (ICP), y una de sus variantes más conocidas, Expectation-Maximization ICP (EMICP). Este estudio contempla tanto su implementación secuencial como su implementación paralela en dispositivos GPU, centrándose en cómo afectan a su rendimiento las distintas configuraciones de parámetros GPU. Como consecuencia de este estudio, también se presenta una propuesta para mejorar el aprovechamiento de la memoria de los dispositivos GPU, permitiendo el trabajo con nubes de puntos más grandes, reduciendo el problema de la limitación de memoria impuesta por el dispositivo. El funcionamiento de los métodos de registro 3D utilizados en este trabajo depende en gran medida de la inicialización del problema. En este caso, esa inicialización del problema consiste en la correcta elección de la matriz de transformación con la que se iniciará el algoritmo. Debido a que este aspecto es muy importante en este tipo de algoritmos, ya que de él depende llegar antes o no a la solución o, incluso, no llegar nunca a la solución, en este trabajo se presenta un estudio sobre el espacio de transformaciones con el objetivo de caracterizarlo y facilitar la elección de la transformación inicial a utilizar en estos algoritmos.
Resumo:
El presente proyecto se enmarca en el área de métodos formales para computación; el objetivo de los métodos formales es asegurar, a través de herramientas lógicas y matemáticas, que sistemas computacionales satisfacen ciertas propiedades. El campo de semántica de lenguajes de programación trata justamente de construir modelos matemáticos que den cuenta de las diferentes características de cada lenguaje (estado mutable, mecanismos de paso de parámetros, órdenes de ejecución, etc.); permitiendo razonar de una manera abstracta, en vez de lidiar con las peculiaridades de implementaciones o las vaguezas de descripciones informales. Como las pruebas formales de corrección son demasiado intrincadas, es muy conveniente realizar estos desarrollos teóricos con la ayuda de asistentes de prueba. Este proceso de formalizar y corrobar aspectos semánticos a través de un asistente se denomina mecanización de semántica. Este proyecto – articulado en tres líneas: semántica de teoría de tipos, implementación de un lenguaje con tipos dependientes y semántica de lenguajes imperativos con alto orden - se propone realizar avances en el estudio semántico de lenguajes de programación, mecanizar dichos resultados, e implementar un lenguaje con tipos dependientes con la intención de que se convierta, en un mediano plazo, en un asistente de pruebas. En la línea de semántica de teoría de tipos los objetivos son: (a) extender el método de normalización por evaluación para construcciones no contempladas aun en la literatura, (b) probar la adecuación de la implementación en Haskell de dicho método de normalización, y (c) construir nuevos modelos categóricos de teoría de tipos. El objetivo de la segunda línea es el diseño e implementación de un lenguaje con tipos dependientes con la intención de que el mismo se convierta en un asistente de pruebas. Una novedad de esta implementación es que el algoritmo de chequeo de tipos es correcto y completo respecto al sistema formal, gracias a resultados ya obtenidos; además la implementación en Haskell del algoritmo de normalización (fundamental para el type-checking) también tendrá su prueba de corrección. El foco de la tercera línea está en el estudio de lenguajes de programación que combinan aspectos imperativos (estado mutable) con características de lenguajes funcionales (procedimientos y funciones). Por un lado se avanzará en la mecanización de pruebas de corrección de compiladores para lenguajes Algollike. El segundo aspecto de esta línea será la definición de semánticas operacional y denotacional del lenguaje de programación Lua y la posterior caracterización del mismo a partir de ellas. Para lograr dichos objetivos hemos dividido las tareas en actividades con metas graduales y que constituyen en sí mismas aportes al estado del arte de cada una de las líneas. La importancia académica de este proyecto radica en los avances teóricos que se propone en la línea de semántica de teoría de tipos, en las contribución para la construcción de pruebas mecanizadas de corrección de compiladores, en el aporte que constituye la definición de una semántica formal para el lenguaje Lua, y en el desarrollo de un lenguaje con tipos dependientes cuyos algoritmos más importantes están respaldados por pruebas de corrección. Además, a nivel local, este proyecto permitirá incorporar cuatro integrantes al grupo de “Semántica de la programación”.
Resumo:
Programa de doctorado: Patología quirúrgica, reproducción humana y factores psicológicos y el proceso de enfermar. La fecha de publicación es la fecha de lectura.
Resumo:
Aquí se expone un ejemplo de programación dinámica, el cual muestra una aplicación directa del principio de optimalidad en problemas de múltiples etapas. No obstante que la aplicación de este ejemplo se reduce a casos en que hay que tomar dos decisiones únicamente, en situaciones reales son diversos los problemas de este tipo y de ahí su importancia. Por otra parte, la forma de solución aquí expuesta resulta accesible aun para aquellos poco versados en programación dinámica. Creador de principios de optimalidad y uno de los principales propulsores de los principios teóricos que gobiernan esta variedad reciente de la programación matemática es R. E. Bellman. El término programación dinámica se define como: un sistema de optimización donde se puede representar cada una de las variables como función de un parámetro común y si este parámetro es el tiempo, entonces se trata de un problema de programación dinámica. Las técnicas de solución son aplicables, entre otros, a los procesos de decisiones de múltiples etapas en las cuales la decisión que se toma en cada etapa depende de las decisiones tomadas previamente.
Resumo:
Tesis (Ingeniero(a) en Automaziación).--Universidad de La Salle. Facultad de Ingeniería. Programa de Ingeniería en Automatización, 2014
Resumo:
El problema de selección de requisitos (o Next Release Problem, NRP) consiste en seleccionar el subconjunto de requisitos que se va a desarrollar en la siguiente versión de una aplicación software. Esta selección se debe hacer de tal forma que maximice la satisfacción de las partes interesadas a la vez que se minimiza el esfuerzo empleado en el desarrollo y se cumplen un conjunto de restricciones. Trabajos recientes han abordado la formulación bi-objetivo de este problema usando técnicas exactas basadas en resolutores SAT y resolutores de programación lineal entera. Ambos se enfrentan a dificultades cuando las instancias tienen un gran tamaño, sin embargo la programación lineal entera (ILP) parece ser más efectiva que los resolutores SAT. En la práctica, no es necesario calcular todas las soluciones del frente de Pareto (que pueden llegar a ser muchas) y basta con obtener un buen número de soluciones eficientes bien distribuidas en el espacio objetivo. Las estrategias de búsqueda basadas en ILP que se han utilizado en el pasado para encontrar un frente bien distribuido en cualquier instante de tiempo solo buscan soluciones soportadas. En este trabajo proponemos dos estrategias basadas en ILP que son capaces de encontrar el frente completo con suficiente tiempo y que, además, tienen la propiedad de aportar un conjunto de soluciones bien distribuido en el frente objetivo en cualquier momento de la búsqueda.