925 resultados para Pore-size Distributions
Resumo:
With the development of micro systems, there is an increasing demand for integrable porous materials. In addition to those conventional applications, such as filtration, wicking, and insulating, many new micro devices, including micro reactors, sensors, actuators, and optical components, can benefit from porous materials. Conventional porous materials, such as ceramics and polymers, however, cannot meet the challenges posed by micro systems, due to their incompatibility with standard micro-fabrication processes. In an effort to produce porous materials that can be used in micro systems, porous silicon (PS) generated by anodization of single crystalline silicon has been investigated. In this work, the PS formation process has been extensively studied and characterized as a function of substrate type, crystal orientation, doping concentration, current density and surfactant concentration and type. Anodization conditions have been optimized for producing very thick porous silicon layers with uniform pore size, and for obtaining ideal pore morphologies. Three different types of porous silicon materials: meso porous silicon, macro porous silicon with straight pores, and macro porous silicon with tortuous pores, have been successfully produced. Regular pore arrays with controllable pore size in the range of 2µm to 6µm have been demonstrated as well. Localized PS formation has been achieved by using oxide/nitride/polysilicon stack as masking materials, which can withstand anodization in hydrofluoric acid up to twenty hours. A special etching cell with electrolytic liquid backside contact along with two process flows has been developed to enable the fabrication of thick macro porous silicon membranes with though wafer pores. For device assembly, Si-Au and In-Au bonding technologies have been developed. Very low bonding temperature (~200 degrees C) and thick/soft bonding layers (~6µm) have been achieved by In-Au bondi ng technology, which is able to compensate the potentially rough surface on the porous silicon sample without introducing significant thermal stress. The application of the porous silicon material in micro systems has been demonstrated in a micro gas chromatograph system by two indispensable components: an integrated vapor source and an inlet filter, wherein porous silicon performs the basic functions of porous media: wicking and filtration. By utilizing a macro porous silicon wick, the calibration vapor source was able to produce a uniform and repeatable vapor generation for n-decane with less than a 0.1% variation in 9 hours, and less than a 0.5% variation in rate over 7 days. With engineered porous silicon membranes the inlet filter was able to show a depth filtration with nearly 100% collection efficiency for particles larger than 0.3µm in diameter, a low pressure-drop of 523Pa at 20sccm flow rate, and a filter capacity of 500µg/cm2.
Resumo:
The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.
Resumo:
A phenomenological transition film evaporation model was introduced to a pore network model with the consideration of pore radius, contact angle, non-isothermal interface temperature, microscale fluid flows and heat and mass transfers. This was achieved by modeling the transition film region of the menisci in each pore throughout the porous transport layer of a half-cell polymer electrolyte membrane (PEM) fuel cell. The model presented in this research is compared with the standard diffusive fuel cell modeling approach to evaporation and shown to surpass the conventional modeling approach in terms of predicting the evaporation rates in porous media. The current diffusive evaporation models used in many fuel cell transport models assumes a constant evaporation rate across the entire liquid-air interface. The transition film model was implemented into the pore network model to address this issue and create a pore size dependency on the evaporation rates. This is accomplished by evaluating the transition film evaporation rates determined by the kinetic model for every pore containing liquid water in the porous transport layer (PTL). The comparison of a transition film and diffusive evaporation model shows an increase in predicted evaporation rates for smaller pore sizes with the transition film model. This is an important parameter when considering the micro-scaled pore sizes seen in the PTL and becomes even more substantial when considering transport in fuel cells containing an MPL, or a large variance in pore size. Experimentation was performed to validate the transition film model by monitoring evaporation rates from a non-zero contact angle water droplet on a heated substrate. The substrate was a glass plate with a hydrophobic coating to reduce wettability. The tests were performed at a constant substrate temperature and relative humidity. The transition film model was able to accurately predict the drop volume as time elapsed. By implementing the transition film model to a pore network model the evaporation rates present in the PTL can be more accurately modeled. This improves the ability of a pore network model to predict the distribution of liquid water and ultimately the level of flooding exhibited in a PTL for various operating conditions.
Resumo:
Hall thrusters have been under active development around the world since the 1960’s. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact crosssection and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.
Resumo:
Satellite measurement validations, climate models, atmospheric radiative transfer models and cloud models, all depend on accurate measurements of cloud particle size distributions, number densities, spatial distributions, and other parameters relevant to cloud microphysical processes. And many airborne instruments designed to measure size distributions and concentrations of cloud particles have large uncertainties in measuring number densities and size distributions of small ice crystals. HOLODEC (Holographic Detector for Clouds) is a new instrument that does not have many of these uncertainties and makes possible measurements that other probes have never made. The advantages of HOLODEC are inherent to the holographic method. In this dissertation, I describe HOLODEC, its in-situ measurements of cloud particles, and the results of its test flights. I present a hologram reconstruction algorithm that has a sample spacing that does not vary with reconstruction distance. This reconstruction algorithm accurately reconstructs the field to all distances inside a typical holographic measurement volume as proven by comparison with analytical solutions to the Huygens-Fresnel diffraction integral. It is fast to compute, and has diffraction limited resolution. Further, described herein is an algorithm that can find the position along the optical axis of small particles as well as large complex-shaped particles. I explain an implementation of these algorithms that is an efficient, robust, automated program that allows us to process holograms on a computer cluster in a reasonable time. I show size distributions and number densities of cloud particles, and show that they are within the uncertainty of independent measurements made with another measurement method. The feasibility of another cloud particle instrument that has advantages over new standard instruments is proven. These advantages include a unique ability to detect shattered particles using three-dimensional positions, and a sample volume size that does not vary with particle size or airspeed. It also is able to yield two-dimensional particle profiles using the same measurements.
Resumo:
An experimental setup was designed to visualize water percolation inside the porous transport layer, PTL, of proton exchange membrane, PEM, fuel cells and identify the relevant characterization parameters. In parallel with the observation of the water movement, the injection pressure (pressure required to transport water through the PTL) was measured. A new scaling for the drainage in porous media has been proposed based on the ratio between the input and the dissipated energies during percolation. A proportional dependency was obtained between the energy ratio and a non-dimensional time and this relationship is not dependent on the flow regime; stable displacement or capillary fingering. Experimental results show that for different PTL samples (from different manufacturers) the proportionality is different. The identification of this proportionality allows a unique characterization of PTLs with respect to water transport. This scaling has relevance in porous media flows ranging far beyond fuel cells. In parallel with the experimental analysis, a two-dimensional numerical model was developed in order to simulate the phenomena observed in the experiments. The stochastic nature of the pore size distribution, the role of the PTL wettability and morphology properties on the water transport were analyzed. The effect of a second porous layer placed between the porous transport layer and the catalyst layer called microporous layer, MPL, was also studied. It was found that the presence of the MPL significantly reduced the water content on the PTL by enhancing fingering formation. Moreover, the presence of small defects (cracks) within the MPL was shown to enhance water management. Finally, a corroboration of the numerical simulation was carried out. A threedimensional version of the network model was developed mimicking the experimental conditions. The morphology and wettability of the PTL are tuned to the experiment data by using the new energy scaling of drainage in porous media. Once the fit between numerical and experimental data is obtained, the computational PTL structure can be used in different types of simulations where the conditions are representative of the fuel cell operating conditions.
Resumo:
It has been proposed that inertial clustering may lead to an increased collision rate of water droplets in clouds. Atmospheric clouds and electrosprays contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. In this thesis, we present the investigation of charged inertial particles embedded in turbulence. We have developed a theoretical description for the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb ’terminalar speed to turbulence dissipation velocity scale), and the settling parameter (the ratio of the gravitational terminal speed to turbulence dissipation velocity scale). For the monodispersion particles, The peak in the radial distribution function is well predicted by the balance between the particle terminal velocity under Coulomb repulsion and a time-averaged ’drift’ velocity obtained from the nonuniform sampling of fluid strain and rotation due to finite particle inertia. The theory is compared to measured radial distribution functions for water particles in homogeneous, isotropic air turbulence. The radial distribution functions are obtained from particle positions measured in three dimensions using digital holography. The measurements support the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of ’gravity’ is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity. The relation between the radial distribution functions and inward mean radial relative velocity is established for charged particles.
Resumo:
We consider the question of optimal shapes, e.g., those causing minimal extinction among all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also shown. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose connecting low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions of randomly oriented aspherical particles wash out the resonances for intermediate size parameters. This proposal is further supported by the sum rule for integrated extinction.
Resumo:
We investigate compositionally monotonous, but energetically diverse, tephra samples from Pacaya to see if fossil bubbles in pyroclasts could reflect eruptive style. Bubble size distributions (BSD) were determined for four ash to lapilli size tephra samples using an adapted version of stereology conversion by Sahagian and Proussevitch (1998). Eruptions range from very weak to very energetic. Hundreds of ESEM BSEs images were processed throughout ImageJ software for a robust and statistically correct data set of vesicles (minimum 700 bubbles per sample). Qualitative textural analysis and major element chemical compositions were also executed. There is higher vesicularity for explosive pyroclasts and an inverse correlation between bubble number density (NV) and explosivity.
Resumo:
The hydrogen ion activity (pH) is a very important parameter in environment monitoring, biomedical research and other applications. Optical pH sensors have several advantages over traditional potentiometric pH measurement, such as high sensitivity, no need of constant calibration, easy for miniaturization and possibility for remote sensing. Several pH indicators has been successfully immobilized in three different solid porous materials to use as pH sensing probes. The fluorescent pH indicator fluorescein-5-isothiocyanate (FITC) was covalently bound onto the internal surface of porous silica (pore size ~10 nm) and retained its pH sensitivity. The excited state pK* a of FITC in porous silica (5.58) was slightly smaller than in solution (5.68) due to the free silanol groups (Si-OH) on the silica surface. The pH sensitive range for this probe is pH 4.5 - 7.0 with an error less than 0.1 pH units. The probe response was reproducible and stable for at least four month, stored in DI water, but exhibit a long equilibrium of up to 100 minutes. Sol-gel based pH sensors were developed with immobilization of two fluorescent pH indicators fluorescein-5-(and-6)-sulfonic acid, trisodium salt (FS) and 8-hydroxypyrene- 1,3,6-trisulfonic acid (HPTS) through physical entrapment. Prior to immobilization, the indicators were ion-paired with a common surfactant hexadecyltrimethylammonium bromide (CTAB) in order to prevent leaching. The sol-gel films were synthesized through the hydrolysis of two different precursors, ethyltriethoxysilane (ETEOS) and 3- glycidoxypropyltrimethoxysilane (GPTMS) and deposited on a quartz slide through spin coating. The pK a of the indicators immobilized in sol-gel films was much smaller than in solutions due to silanol groups on the inner surface of the sol-gel films and ammonium groups from the surrounding surfactants. Unlike in solution, the apparent pK a of the indicators in sol-gel films increased with increasing ionic strength. The equilibrium time for these sensors was within 5 minutes (with film thickness of ~470 nm). Polyethylene glycol (PEG) hydrogel was of interest for optical pH sensor development because it is highly proton permeable, transparent and easy to synthesize. pH indicators can be immobilized in hydrogel through physical entrapment and copolymerization. FS and HPTS ion-pairs were physically entrapped in hydrogel matrix synthesized via free radical initiation. For covalent immobilization, three indicators, 6,8-dihydroxypyrene-1,3- disulfonic acid (DHPDS), 2,7-dihydroxynaphthalene-3,6-disulfonic acid (DHNDS) and cresol red were first reacted with methacrylic anhydride (MA) to form methacryloylanalogs for copolymerization. These hydrogels were synthesized in aqueous solution with a redox initiation system. The thickness of the hydrogel film is controlled as ~ 0.5 cm and the porosity can be adjusted with the percentage of polyethylene glycol in the precursor solutions. The pK a of the indicators immobilized in the hydrogel both physically and covalently were higher than in solution due to the medium effect. The sensors are stable and reproducible with a short equilibrium time (less than 4 minutes). In addition, the color change of cresol red immobilized hydrogel is vivid from yellow (acidic condition) to purple (basic condition). Due to covalently binding, cresol red was not leaching out from the hydrogel, making it a good candidate of reusable "pH paper".
Resumo:
In terms of atmospheric impact, the volcanic eruption of Mt. Pinatubo (1991) is the best characterized large eruption on record. We investigate here the model-derived stratospheric warming following the Pinatubo eruption as derived from SAGE II extinction data including recent improvements in the processing algorithm. This method, termed SAGE_4λ, makes use of the four wavelengths (385, 452, 525 and 1024 nm) of the SAGE II data when available, and uses a data-filling procedure in the opacity-induced "gap" regions. Using SAGE_4λ, we derived aerosol size distributions that properly reproduce extinction coefficients also at much longer wavelengths. This provides a good basis for calculating the absorption of terrestrial infrared radiation and the resulting stratospheric heating. However, we also show that the use of this data set in a global chemistry–climate model (CCM) still leads to stronger aerosol-induced stratospheric heating than observed, with temperatures partly even higher than the already too high values found by many models in recent general circulation model (GCM) and CCM intercomparisons. This suggests that the overestimation of the stratospheric warming after the Pinatubo eruption may not be ascribed to an insufficient observational database but instead to using outdated data sets, to deficiencies in the implementation of the forcing data, or to radiative or dynamical model artifacts. Conversely, the SAGE_4λ approach reduces the infrared absorption in the tropical tropopause region, resulting in a significantly better agreement with the post-volcanic temperature record at these altitudes.
Resumo:
Abstract. Lake Ohrid is likely of Pliocene age and thus commonly referred to as the oldest existing lake in Europe. In this study spatial variability of recent sediment composition is assessed using >50 basin wide distributed surface sediment samples. Analysis of biogeochemical bulk parameters, selected metals, pigment concentrations as well as grain size distributions revealed a significant spatial heterogeneity in surface sediment composition. It implies that sedimentation in Lake Ohrid is controlled by an interaction of multiple natural and anthropogenic factors and processes. Major factors controlling surface sediment composition are related to differences in geological catchment characteristics, anthropogenic land use, and a counterclockwise rotating surface water current. In some instances processes controlling sediment composition also seem to impact distribution patterns of biodiversity, which suggests a common interaction of processes responsible for both patterns.
Resumo:
RecA in Escherichia coli and it's homologue, ScRad51 in Saccharomyces cerevisiae, play important roles in recombinational repair. ScRad51 homologues have been discovered in a wide range of organisms including Schizosaccharomyces pombe, lily, chicken, mouse and human. To date there is no direct evidence to describe that mouse Rad51(MmRad51) is involved in DNA double-strand break repair. In order to elucidate the role of MmRad51 in vivo, it was mutated by the embryonic stem (ES) cell/gene targeting technology in mice. The mutant embryos arrested in development shortly after implantation. There was a decrease in cell proliferation followed by programmed cell death, and trophectoderm-derived cells were sensitive to $\gamma$-radiation. Severe chromosome loss was observed in most mitotically dividing cells. The mutant embryos lived longer and developed further in a p53 mutant background; however, double-mutant embryonic fibroblasts failed to proliferate in tissue culture, reflecting the embryos limited life span. Based on these data, MmRad51 repairs DNA damage induced by $\gamma$-radiation, is needed to maintain euplody, and plays an important role in proliferating cells.^ Ku is a heterodimer of 70 and 80 kDs subunit, which binds to DNA ends and other altered DNA structures such as hairpins, nicks, and gaps. In addition, Ku is required for DNA-PK activity through a direct association. Although the biochemical properties of Ku and DNA-PKcs have been characterized in cells, their physiological functions are not clear. In order to understand the function of Ku in vivo, we generated mice homozygous for a mutation of the Ku80 gene. Ku80-deficient mice, like scid mice, showed severe immunodeficiency due to a impairment of V(D)J recombination. Mutant mice were semiviable and runted, cells derived from mutant embryos displayed hypersensitivity to $\gamma$-radiation, a decreased growth rate, a slow entry into S phase, altered colony size distributions, and a short life span. Based on these results, mutant cells and mice appeared to prematurely age. ^
Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present
Resumo:
As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry–climate model (CCM) simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600–present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.
Resumo:
The light scattering properties of oceanic particles have been suggested as an alternative index of phytoplankton biomass than chlorophyll-a concentration (chl-a), with the benefit of being less sensitive to physiological forcings (e.g., light and nutrients) that alter the intracellular pigment concentrations. The drawback of particulate scattering is that it is not unique to phytoplankton. Nevertheless, field studies have demonstrated that, to first order, the particulate beam-attenuation coefficient (c(p)) can track phytoplankton biomass. The relationship between c(p) and the particulate backscattering coefficient (b(bp)), a property retrievable from space, has not been fully evaluated, largely due to a lack of open-ocean field observations. Here, we present extensive data on inherent optical properties from the Equatorial Pacific surface waters and demonstrate a remarkable coherence in b(bp) and c(p). Coincident measurements of particle size distributions (PSDs) and optical properties of size-fractionated samples indicate that this covariance is due to both the conserved nature of the PSD and a greater contribution of phytoplankton-sized particles to b(bp) than theoretically predicted. These findings suggest that satellite-derived b(bp)could provide similar information on phytoplankton biomass in the open ocean as c(p).