964 resultados para Peritoneal-exudate Macrophages
Resumo:
Studies on the environmental consequences of stress are relevant for economic and animal welfare reasons. We recently reported that long-term heat stressors (31 +/- 1 degrees C and 36 +/- 1 degrees C for 10 h/d) applied to broiler chickens (Gallus gallus domesticus) from d 35 to 42 of life increased serum corticosterone concentrations, decreased performance variables and the macrophage oxidative burst, and produced mild, multifocal acute enteritis. Being cognizant of the relevance of acute heat stress on tropical and subtropical poultry production, we designed the current experiment to analyze, from a neuroimmune perspective, the effects of an acute heat stress (31 +/- 1 degrees C for 10 h on d 35 of life) on serum corticosterone, performance variables, intestinal histology, and peritoneal macrophage activity in chickens. We demonstrated that the acute heat stress increased serum corticosterone concentrations and mortality and decreased food intake, BW gain, and feed conversion (P < 0.05). We did not find changes in the relative weights of the spleen, thymus, and bursa of Fabricius (P > 0.05). Increases in the basal and the Staphylococcus aureus-induced macrophage oxidative bursts and a decrease in the percentage of macrophages performing phagocytosis were also observed. Finally, mild, multifocal acute enteritis, characterized by the increased presence of lymphocytes and plasmocytes within the lamina propria of the jejunum, was also observed. We found that the stress-induced hypothalamic-pituitary-adrenal axis activation was responsible for the negative effects observed on chicken performance and immune function as well as for the changes in the intestinal mucosa. The data presented here corroborate with those presented in other studies in the field of neuroimmunomodulation and open new avenues for the improvement of broiler chicken welfare and production performance.
Resumo:
We demonstrate that during inflammatory responses the nuclear factor kappa B (NF-kappa B) induces the synthesis of melatonin by macrophages and that macrophage-synthesized melatonin modulates the function of these professional phagocytes in an autocrine manner. Expression of a DsRed2 fluorescent reporter driven by regions of the aa-nat promoter, that encodes the key enzyme involved in melatonin synthesis (arylalkylamine-N-acetyltransferase), containing one or two upstream kappa B binding sites in RAW 264.7 macrophage cell lines was repressed when NF-kappa B activity was inhibited by blocking its nuclear translocation or its DNA binding activity or by silencing the transcription of the RelA or c-Rel NF-kappa B subunits. Therefore, transcription of aa-nat driven by NF-kappa B dimers containing RelA or c-Rel subunits mediates pathogen-associated molecular patterns (PAMPs) or pro-inflammatory cytokine-induced melatonin synthesis in macrophages. Furthermore, melatonin acts in an autocrine manner to potentiate macrophage phagocytic activity, whereas luzindole, a competitive antagonist of melatonin receptors, decreases macrophage phagocytic activity. The opposing functions of NF-kappa B in the modulation of AA-NAT expression in pinealocytes and macrophages may represent the key mechanism for the switch in the source of melatonin from the pineal gland to immune-competent cells during the development of an inflammatory response.
Resumo:
ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Problem To evaluate CD4+CD25highFoxp3+ cells and IL-6, IL-10, IL-17, and TGF-beta in the peritoneal fluid of women with endometriosis. Method of study A total of ninety-eight patients were studied: endometriosis (n = 70) and control (n = 28). First, peritoneal fluid lymphocytes were isolated, and CD4+CD25high cells were identified using flow cytometry. Then, RT-PCR was performed to verify Foxp3 expression in these cells. Also, IL-6, IL-10, IL-17, and TGF-beta concentration was determined. Results Of all the lymphocytes in the peritoneal fluid of women with endometriosis, 36.5% (median) were CD4+CD25high compared to only 1.15% (median) in the control group (P < 0.001). Foxp3 expression was similarly elevated in patients with the disease compared to those without (median, 50 versus 5; P < 0.001). IL-6 and TGF-beta were higher in endometriosis group (IL-6: 327.5 pg/mL versus 195.5 pg/mL; TGF-beta: 340 pg/mL versus 171.5 pg/mL; both P < 0.001). IL-10 and IL-17 showed no significant differences between the two groups. Conclusion The peritoneal fluid of patients with endometriosis had a higher percentage of CD4+CD25highFoxp3+ cells and also higher levels of IL-6 and TGF-beta compared to women without the disease. These findings suggest that CD4+CD25highFoxp3+ cells may play a role in the pathogenesis of endometriosis.
Resumo:
Marine sponges of the order Verongida are a rich source of biologically active bromotyrosine-derived secondary metabolites. However, none of these compounds are known to display anti-inflammatory activity. In the present investigation, we report the anti-inflammatory effects of 11-oxoaerothionin isolated from the Verongida sponge Aplysina fistularis. When RAW264.7 cells and primary macrophages were preincubated with 11-oxoaerothionin and stimulated with LPS (lipopolysaccharide), a concentration-dependent inhibition of iNOS (inducible nitric oxide synthase) protein and NO2- (Nitrite) production were observed. The same effect was observed when proinflammatory cytokines and PGE(2) (Prostaglandin E2) production was evaluated. In summary, we demonstrated that in the presence of LPS, 11-oxoaerothionin suppresses NO2 and iNOS expression as well as inflammatory cytokines and PGE(2).
Resumo:
Objectives The extract and essential oil of clove (Syzygium aromaticum) are widely used because of their medicinal properties. Eugenol is the most important component of clove, showing several biological properties. Herein we have analysed the immunomodulatory/anti-inflammatory effect of clove and eugenol on cytokine production (interleukin (IL)-1 beta, IL-6 and IL-10) in vitro. Methods Macrophages were incubated with clove or eugenol (5, 10, 25, 50 or 100 mg/well) for 24 h. Concentrations that inhibited the production of cytokines were used before or after incubation with lipopolysaccharide (LPS), to verify a preventive or therapeutic effect. Culture supernatants were harvested for measurement of cytokines by enzyme-linked immunosorbent assay. Key findings Clove (100 mg/well) inhibited IL-1 beta, IL-6 and IL-10 production and exerted an efficient action either before or after LPS challenge for all cytokines. Eugenol did not affect IL-1 beta production but inhibited IL-6 and IL-10 production. The action of eugenol (50 or 100 mg/well) on IL-6 production prevented efficiently effects of LPS either before or after its addition, whereas on IL-10 production it counteracted significantly LPS action when added after LPS incubation. Conclusions Clove exerted immunomodulatory/anti-inflammatory effects by inhibiting LPS action. A possible mechanism of action probably involved the suppression of the nuclear factor-kB pathway by eugenol, since it was the major compound found in clove
Resumo:
Objective: We investigated the effect of advanced glycated albumin (AGE-albumin) on macrophage sensitivity to inflammation elicited by S100B calgranulin and lipopolysaccharide (LPS) and the mechanism by which HDL modulates this response. We also measured the influence of the culture medium, isolated from macrophages treated with AGE-albumin, on reverse cholesterol transport (RCT). Methods and results: Macrophages were incubated with control (C) or AGE-albumin in the presence or absence of HDL, followed by incubations with S100B or LPS. Also, culture medium obtained from cells treated with C- or AGE-albumin, following S100B or LPS stimulation was utilized to treat naive macrophages in order to evaluate cholesterol efflux and the expression of HDL receptors. In comparison with C-albumin, AGE-albumin, promoted a greater secretion of cytokines after stimulation with S100B or LPS. A greater amount of cytokines was also produced by macrophages treated with AGE-albumin even in the presence of HDL Cytokine-enriched medium, drawn from incubations with AGE-albumin and S100B or LPS impaired the cholesterol efflux mediated by apoA-I (23% and 37%, respectively), HDL2 (43% and 47%, respectively) and HDL3 (20% and 8.5%, respectively) and reduced ABCA-1 protein level (16% and 26%, respectively). Conclusions: AGE-albumin primes macrophages for an inflammatory response impairing the RCT. Moreover, AGE-albumin abrogates the anti-inflammatory role of HDL, which may aggravate the development of atherosclerosis in DM. (C) 2012 Elsevier BM. All rights reserved.
Resumo:
Abstract Background Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.
Resumo:
Abstract Background Leukotriene B4 (LTB4) is a potent inflammatory mediator that also stimulates the immune response. In addition, it promotes polymorphonuclear leukocyte phagocytosis, chemotaxis, chemokinesis and modulates cytokines release. Regarding chemical instability of the leukotriene molecule, in the present study we assessed the immunomodulatory activities conferred by LTB4 released from microspheres (MS). A previous oil-in-water emulsion solvent extraction-evaporation method was chosen to prepare LTB4-loaded MS. Results In the mice cremasteric microcirculation, intraescrotal injection of 0.1 ml of LTB4-loaded MS provoked significant increases in leukocyte rolling flux, adhesion and emigration besides significant decreases in the leukocyte rolling velocity. LTB4-loaded MS also increase peroxisome proliferator-activated receptor-α (PPARα) expression by murine peritoneal macrophages and stimulate them to generate nitrite levels. Monocyte chemoattractant protein-1 (MCP-1) and nitric oxide (NO) productions were also increased when human umbilical vein and artery endothelial cells (HUVECs and HUAECs, respectively) were stimulated with LTB4-loaded MS. Conclusion LTB4-loaded MS preserve the biological activity of the encapsulated mediator indicating their use as a new strategy to modulate cell activation, especially in the innate immune response.
Resumo:
Abstract Background A number of reports have demonstrated that rodents immunized with DNA vaccines can produce antibodies and cellular immune responses presenting a long-lasting protective immunity. These findings have attracted considerable interest in the field of DNA vaccination. We have previously described the prophylactic and therapeutic effects of a DNA vaccine encoding the Mycobacterium leprae 65 kDa heat shock protein (DNA-HSP65) in a murine model of tuberculosis. As DNA vaccines are often less effective in humans, we aimed to find out how the DNA-HSP65 stimulates human immune responses. Methods To address this question, we analysed the activation of both human macrophages and dendritic cells (DCs) cultured with DNA-HSP65. Then, these cells stimulated with the DNA vaccine were evaluated regarding the expression of surface markers, cytokine production and microbicidal activity. Results It was observed that DCs and macrophages presented different ability to uptake DNA vaccine. Under DNA stimulation, macrophages, characterized as CD11b+/CD86+/HLA-DR+, produced high levels of TNF-alpha, IL-6 (pro-inflammatory cytokines), and IL-10 (anti-inflammatory cytokine). Besides, they also presented a microbicidal activity higher than that observed in DCs after infection with M. tuberculosis. On the other hand, DCs, characterized as CD11c+/CD86+/CD123-/BDCA-4+/IFN-alpha-, produced high levels of IL-12 and low levels of TNF-alpha, IL-6 and IL-10. Finally, the DNA-HSP65 vaccine was able to induce proliferation of peripheral blood lymphocytes. Conclusion Our data suggest that the immune response is differently activated by the DNA-HSP65 vaccine in humans. These findings provide important clues to the design of new strategies for using DNA vaccines in human immunotherapy.
Resumo:
Abstract Background Advanced glycation end products (AGE) alter lipid metabolism and reduce the macrophage expression of ABCA-1 and ABCG-1 which impairs the reverse cholesterol transport, a system that drives cholesterol from arterial wall macrophages to the liver, allowing its excretion into the bile and feces. Oxysterols favors lipid homeostasis in macrophages and drive the reverse cholesterol transport, although the accumulation of 7-ketocholesterol, 7alpha- hydroxycholesterol and 7beta- hydroxycholesterol is related to atherogenesis and cell death. We evaluated the effect of glycolaldehyde treatment (GAD; oxoaldehyde that induces a fast formation of intracellular AGE) in macrophages overloaded with oxidized LDL and incubated with HDL alone or HDL plus LXR agonist (T0901317) in: 1) the intracellular content of oxysterols and total sterols and 2) the contents of ABCA-1 and ABCG-1. Methods Total cholesterol and oxysterol subspecies were determined by gas chromatography/mass spectrometry and HDL receptors content by immunoblot. Results In control macrophages (C), incubation with HDL or HDL + T0901317 reduced the intracellular content of total sterols (total cholesterol + oxysterols), cholesterol and 7-ketocholesterol, which was not observed in GAD macrophages. In all experimental conditions no changes were found in the intracellular content of other oxysterol subspecies comparing C and GAD macrophages. GAD macrophages presented a 45% reduction in ABCA-1 protein level as compared to C cells, even after the addition of HDL or HDL + T0901317. The content of ABCG-1 was 36.6% reduced in GAD macrophages in the presence of HDL as compared to C macrophages. Conclusion In macrophages overloaded with oxidized LDL, glycolaldehyde treatment reduces the HDL-mediated cholesterol and 7-ketocholesterol efflux which is ascribed to the reduction in ABCA-1 and ABCG-1 protein level. This may contribute to atherosclerosis in diabetes mellitus.
Resumo:
OBJETIVO: Descrever e comparar a Qualidade de Vida Relacionada à Saúde (QVRS) de pacientes em Diálise Peritoneal (DP) que tinham ou não trabalho remunerado. MÉTODOS: Estudo seccional e populacional com 82 pacientes dos dois serviços de DP de Ribeirão Preto, (SP). A coleta de dados foi realizada por entrevistas entre dezembro/2009 e março/2010. Os questionário para caracterização dos pacientes, o Miniexame do Estado Mental e o Kidney Disease and Quality of Life-Short Form foram usados. Foram feitas as análises estatística exploratória uni e bivariada e a confirmatória bivariada entre variáveis independentes e as dimensões de QVRS. RESULTADOS: os pacientes com trabalho remunerado apresentavam maiores escores médios refletindo melhor QVRS para a maioria das dimensões do instrumento utilizado. CONCLUSÃO: o trabalho é uma faceta importante da vida desses pacientes e merece a atenção dos profissionais da saúde na busca de estratégias que favoreçam e incentivem sua manutenção e reinserção no mercado de trabalho.
Resumo:
Atherosclerosis is a complex disease in which vessels develop plaques comprising dysfunctional endothelium, monocyte derived lipid laden foam cells and activated lymphocytes. Considering that humans and animal models of the disease develop quite distinct plaques, we used human plaques to search for proteins that could be used as markers of human atheromas. Phage display peptide libraries were probed to fresh human carotid plaques, and a bound phage homologous to plexin B1, a high affinity receptor for CD100, was identified. CD100 is a member of the semaphorin family expressed by most hematopoietic cells and particularly by activated T cells. CD100 expression was analyzed in human plaques and normal samples. CD100 mRNA and protein were analyzed in cultured monocytes, macrophages and foam cells. The effects of CD100 in oxLDL-induced foam cell formation and in CD36 mRNA abundance were evaluated. Human atherosclerotic plaques showed strong labeling of CD100/SEMA4D. CD100 expression was further demonstrated in peripheral blood monocytes and in in vitro differentiated macrophages and foam cells, with diminished CD100 transcript along the differentiation of these cells. Incubation of macrophages with CD100 led to a reduction in oxLDL-induced foam cell formation probably through a decrease of CD36 expression, suggesting for the first time an atheroprotective role for CD100 in the human disease. Given its differential expression in the numerous foam cells and macrophages of the plaques and its capacity to decrease oxLDL engulfment by macrophages we propose that CD100 may have a role in atherosclerotic plaque development, and may possibly be employed in targeted treatments of these atheromas.
Resumo:
Pyroptosis is a molecularly controlled form of cell death that exhibits some features of apoptosis as well of necrosis. Pyroptosis is induced by inflammasome-activated caspase-1 or caspase-11 (caspase-4 in humans), as a result of distinct pathogenic or damage stimuli. Although pyroptosis displays some morphological and biochemical features of apoptosis, it has an inflammatory outcome due to the loss of plasma membrane integrity and the consequent release of intracellular contents, reminiscent to necrosis. Here, we use cytosolic delivery of purified flagellin as an experimental tool to trigger pyroptosis and describe potential methods to study this form of cell death. Finally, we discuss the advantages and limitations of these methods
Resumo:
Crotoxin (CTX) is the main neurotoxic component of Crotalus durissus terrificus snake venom. It inhibits tumour growth and modulates the function of macrophages, which are essential cells in the tumour microenvironment. The present study investigated the effect of CTX on the secretory activity of monocultured macrophages and macrophages co-cultivated with LLC-WRC 256 cells. The effect of the macrophage secretory activities on tumour cell proliferation was also evaluated. Macrophages pre-treated with CTX (0.3 μg/mL) for 2 h were co-cultivated with LLC-WRC 256 cells, and the secretory activity of the macrophages was determined after 12, 24 and 48 h. The co-cultivation of CTX-treated macrophages with the tumour cells caused a 20% reduction in tumour cell proliferation. The production of both H2O2 and NO was increased by 41% and 29% after 24 or 48 h of co-cultivation, respectively, compared to the values for the co-cultures of macrophages of control. The level of secreted IL-1β increased by 3.7- and 3.2-fold after 12 h and 24 h of co-cultivation, respectively. Moreover, an increased level of LXA4 (25%) was observed after 24 h of co-cultivation, and a 2.3- and 2.1-fold increased level of 15-epi-LXA4 was observed after 24 h and 48 h, respectively. Boc-2, a selective antagonist of formyl peptide receptors, blocked both the stimulatory effect of CTX on the macrophage secretory activity and the inhibitory effect of these cells on tumour cell proliferation. Taken together, these results indicate that CTX enhanced the secretory activity of macrophages, which may contribute to the antitumour activity of these cells, and that activation of formyl peptide receptors appears to play a major role in this effect.