905 resultados para PHOTONIC WIRES
Resumo:
Two beetle-type scanning tunneling microscopes are described. Both designs have the thermal stability of the Besocke beetle and the simplicity of the Wilms beetle. Moreover, sample holders were designed that also allow both semiconductor wafers and metal single crystals to be studied. The coarse approach is a linear motion of the beetle towards the sample using inertial slip–stick motion. Ten wires are required to control the position of the beetle and scanner and measure the tunneling current. The two beetles were built with different sized piezolegs, and the vibrational properties of both beetles were studied in detail. It was found, in agreement with previous work, that the beetle bending mode is the lowest principal eigenmode. However, in contrast to previous vibrational studies of beetle-type scanning tunneling microscopes, we found that the beetles did not have the “rattling” modes that are thought to arise from the beetle sliding or rocking between surface asperities on the raceway. The mass of our beetles is 3–4 times larger than the mass of beetles where rattling modes have been observed. We conjecture that the mass of our beetles is above a “critical beetle mass.” This is defined to be the beetle mass that attenuates the rattling modes by elastically deforming the contact region to the extent that the rattling modes cannot be identified as distinct modes in cross-coupling measurements.
Resumo:
The electric field in certain electrostatic devices can be modeled by a grounded plate electrode affected by a corona discharge generated by a series of parallel wires connected to a DC high-voltage supply. The system of differential equations that describe the behaviour (i.e., charging and motion) of the conductive particle in such an electric field has been numerically solved, using several simplifying assumptions. Thus, it was possible to investigate the effect of various electrical and mechanical factors on the trajectories of conductive particles. This model has been employed to study the behaviour of coalparticles in fly-ash corona separators.
Resumo:
Spatial dimensionality affects the degree of confinement when an electron-hole pair is squeezed from one or more dimensions approaching the bulk exciton Bohr radius (alpha(B)) limit. The etectron-hole interaction in zero-dimensional (0D) dots, one-dimensional (1D) rods/wires, and two-dimensional (2D) wells/sheets should be enhanced by the increase in confinement dimensions in the order 0D > 1D > 2D. We report the controlled synthesis of PbS nanomateriats with 0D, 1D, and 2D forms retaining at least one dimension in the strongly confined regime far below alpha(B) (similar to 10 nm for PbS) and provide evidence through varying the exciton-phonon coupling strength that the degree of confinement is systematically weakened by the loss of confinement dimension. Geometry variations show distinguishable far-field optical polarizations, which could find useful applications in polarization-sensitive devices.
Resumo:
Aluminum-Nickel alloys ranging from 0.06 pct to 6.1 pct (by wt) Ni have been developed for high strength-high conductivity applications. These alloys were produced by solidification in a permanent mold followed by homogenization, hot extrusion or hot rolling and cold drawing to wire form. This sequence of fabrication a) led to the production of fine fibrous dispersoids of NiAl3 as part of the Al-NiAl3 eutectic during the initial casting operation, b) permitted the retention of fine fibrous dispersiods of NiAl3 produced during casting without any significant coarsening during processing and c) led to uniform dispersion and general alignment of these fibrous dispersoids along a given direction in the product without any measurable fiber-matrix separation, extensive fiber-fragmentation or crack production in the matrix. These alloys can be processed to wire form as easily as aluminum and when processed by the above sequence, possess very attractive combination of high strength-high electrical conductivity. Tensile strengths range from 173 N/mm2 (at 0.6 pct Ni) to 241 N/mm2 (at 6.1 pct Ni) in combination with corresponding conductivity values between 62 pct IACS and 55.5 pct IACS. The wires also possess attractive yield strength; for instance, the 0.2 pct off-set strength of Al-6.1 pct Ni wire is 213 N/mm2. Using simple composite rules, the estimated strength and the conductivity of NiAl3 fibers were found to be 1380 N/mm2 and 18 pct IACS respectively, in these wires.
Resumo:
We report the growth of nanowires of the charge transfer complex tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) with diameters as low as 130 nm and show that such nanowires can show Peierls transitions at low temperatures. The wires of sub-micron length were grown between two prefabricated electrodes (with sub-micron gap) by vapor phase growth from a single source by applying an electric field between the electrodes during the growth process. The nanowires so grown show a charge transfer ratio similar to 0.57, which is close to that seen in bulk crystals. Below the transition the transport is strongly nonlinear and can be interpreted as originating from de-pinning of CDW that forms at the Peierls transition.
Resumo:
ARTIST STATEMENT VIBRANTe 2.0 was inspired by a research project for Parkinson’s disease patients aimed at developing a wearable device to collect relevant data for patients and medical health professionals. Vibrante is a Spanish word that translates to vibrant; literally meaning shaking or vibrations. Vibrante also has a dual meaning including vibrancy, energy, activity, and liveliness. Parkinson’s can be a debilitating disease, but it does not mean the person has to lose energy, activeness or vibrancy. As technology moves from being worn to becoming implantable and completely hidden within the body, the very notion of its physicality becomes difficult to grasp. While the human body hides implantable technology, VIBRANTe 2.0 intentionally hides the human body by making it invisible to reveal the technology stitched within. Wires become veins, delivering lifeblood to the technology inside, allowing it to pulsate and exist, while motherboards become networked hubs by which information is transferred through and within the body, performing functions that mirror and often surpass human performance capabilities. Ultimately, VIBRANTe 2.0 seeks to prompt the viewer to reflect on the potential ramifications of the complete immersion of technology into the human body. CONTEXT Technology is increasingly penetrating all aspects of our environment, and the rapid uptake of devices that live near, on or in our bodies is facilitating radical new ways of working, relating and socialising. Such technology, with its capacity to generate previously unimaginable levels of data, offers the potential to provide life-augmenting levels of interactivity. However, the absorption of technology into the very fabric of clothes, accessories and even bodies begins to dilute boundaries between physical, technological and social spheres, generating genuine ethical and privacy concerns and potentially having implications for human evolution. Embedding technology into the fabric of our clothes, accessories, and even the body enable the acquisition of and the connection to vast amounts of data about people and environments in order to provide life-augmenting levels of interactivity. Wearable sensors for example, offer the potential for significant benefits in the future management of our wellbeing. Fitness trackers such as ‘Fitbit’ and ‘Garmen’ provide wearers with the ability to monitor their personal fitness indicators while other wearables provide healthcare professionals with information that improves diagnosis and observation of medical conditions. This exhibition aimed to illustrate this shifting landscape through a selection of experimental wearable and interactive works by local, national and international artists and designers. The exhibition will also provide a platform for broader debate around wearable technology, our mediated future-selves and human interactions in this future landscape. EXHIBITION As part of Artisan’s Wearnext exhibition, the work was on public display from 25 July to 7 November 2015 and received the following media coverage: [Please refer to Additional URLs]
Resumo:
A reliable protection against direct lightning hit is very essential for satellite launch pads. In view of this, suitable protection systems are generally employed. The evaluation of efficacy of the lightning protection schemes among others requires an accurate knowledge of the consequential potential rise at the struck point and the current injected into soil at the earth termination. The present work has made a detailed effort to deduce these quantities for the lightning protection scheme of the Indian satellite launch pad-I. A reduced scale model of the system with a frequency domain approach is employed for the experimental study. For further validation of the experimental approach, numerical simulations using numerical electromagnetic code-2 are also carried out on schemes involving single tower. The study results on the protection system show that the present design is quite safe with regard to top potential rise. It is shown that by connecting ground wires to the tower, its base current and, hence, the soil potential rise can be reduced. An evaluation of an alternate design philosophy involving insulated mast scheme is also made. The potential rise in that design is quantified and the possibility of a flashover to supporting tower is briefly looked into. The supporting tower is shown to have significant induced currents.
Resumo:
The inertial impaction of Lycopodium spores on single wires lying transverse to the direction of flow has been studied. The equations of particle motion in a potential flow field have been modified for the case when Stokes' law is inapplicable. Solutions to the above equations have been obtained by digital computation. Rec, the Reynolds number based on cylinder diameter, varied from 4 to 240; particle trajectories in a flow field at Rec = 10 have been determined for inertia parameter K = 1, 2, 4, 6, and 10. Ten trajectories were developed for the above cases by the numerical stepwise method. Experiments were performed by depositing Lycopodium spores on adhesive-coated wires of various diameters and at different velocities. The weight of dust deposited was determined with a microbalance. The experimental conditions were:. Wire diameters: 345, 457, 1500 μ. Particle diameter: 35 μ. Air velocities: 20-250 cm/sec. Inertia parameter: 1-60. The particle was considered as a point mass in the theoretical analysis. But in the experiments the ratio of particle size to wire size was not negligible (rp/rc = 0·1) and hence the effect of finite size of particle on collection efficiency due to the direct interception effect has been estimated. The effect of particle size distribution on collection efficiency has also been estimated. The experimental efficiencies obtained compare well with the calculated efficiencies at Rec = 10 when direct interception is taken into account.
Resumo:
Free convection heat transfer in vertical concentric, cylindrical annuli is investigated analytically and experimentally. The approximate double boundary layer model used by Emery and Chu for the case of vertical parallel plates is extended to the present case in obtaining heat transfer correlations in laminar free convection. Different correlations for the inner cylinder depending on the radius to the length ratio of the inner cylinder and the Rayleigh number, were used in the derivation of correlations for the annuli. The results for the case of short cylinders inside tubes are in agreement (within about 10 per cent) with the existing correlations. For other cases, namely long cylinders in annuli and wires in annuli, experiments conducted show the agreement of the analysis with experiments.
Resumo:
This paper reports on the investigations of laminar free convection heat transfer from vertical cylinders and wires whose surface temperature varies along the height according to the relation TW - T∞ = Nxn. The set of boundary layer partial differential equations and the boundary conditions are transformed to a more amenable form and solved by the process of successive substitution. Numerical solutions of the first approximated equations (two-point nonlinear boundary value type of ordinary differential equations) bring about the major contribution to the problem (about 95%), as seen from the solutions of higher approximations. The results reduce to those for the isothermal case when n=0. Criteria for classifying the cylinders into three broad categories, viz., short cylinders, long cylinders and wires, have been developed. For all values of n the same criteria hold. Heat transfer correlations obtained for short cylinders (which coincide with those of flat plates) are checked with those available in the literature. Heat transfer and fluid flow correlations are developed for all the regimes.
Resumo:
Investigation on laminar free convection heat transfer from vertical cylinders and wires having a surface temperature variation of the form TW - T∞ = M emx are presented. As in Part I for power law surface temperature variation, the axisymmetric boundary layer equations of mass, momentum and energy are transformed to more convenient forms and solved numerically. The second approximation refines the results of the first upto a maximum of only 2%. Analysis of the results indicates that cylinders can be classified into the same three categories as in Part I, namely, short cylinders, long cylinders, and wires, heat transfer and fluid flow correlations being developed for each case.
Resumo:
Driven nonequilibrium structural phase transformation has been probed using time-varying resistance fluctuations or noise. We demonstrate that the non-Gaussian component (NGC) of noise obtained by evaluating the higher-order statistics of fluctuations, serves as a simple kinetic detector of these phase transitions. Using the Martensite transformation in free-standing wires of nickel-titanium binary alloys as a prototype, we observe clear deviations from the Gaussian background in the transformation zone, indicative of the long-range correlations in the system as the phase transforms. The viability of non-Gaussian statistics as a robust probe to structural phase transition was also confirmed by comparing the results from differential scanning calorimetry measurements. We further studied the response of the NGC to the modifications in the microstructure on repeated thermal cycling, as well as the variations in the temperature-drive rate, and explained the results using established simplistic models based on the different competing time scales. Our experiments (i) suggest an alternative method to estimate the transformation temperature scales with high accuracy and (ii) establish a connection between the material-specific evolution of microstructure to the statistics of its linear response. Since the method depends on an in-built long-range correlation during transformation, it could be portable to other structural transitions, as well as to materials of different physical origin and size.
Resumo:
Clustered architecture processors are preferred for embedded systems because centralized register file architectures scale poorly in terms of clock rate, chip area, and power consumption. Although clustering helps by improving clock speed, reducing energy consumption of the logic, and making the design simpler, it introduces extra overheads by way of inter-cluster communication. This communication happens over long global wires which leads to delay in execution and significantly high energy consumption.In this paper, we propose a new instruction scheduling algorithm that exploits scheduling slacks of instructions and communication slacks of data values together to achieve better energy-performance trade-offs for clustered architectures with heterogeneous interconnect. Our instruction scheduling algorithm achieves 35% and 40% reduction in communication energy, whereas the overall energy-delay product improves by 4.5% and 6.5% respectively for 2 cluster and 4 cluster machines with marginal increase (1.6% and 1.1%) in execution time. Our test bed uses the Trimaran compiler infrastructure.
Resumo:
Nanomechanical properties of indium nanowires like structures fabricated on quartz substrate by trench template technique, measured using nanoindentation. The hardness and elastic modulus of wires were measured and compared with the values of indium thin film. Displacementburst observed while indenting the nanowire. `Wire-only hardness' obtained using Korsunsky model from composite hardness. Nanowires have exhibited almost same modulus as indium thin film but considerable changes were observed in hardness value.
Resumo:
This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed concrete T-beams having a shear span to depth ratio of 2.65 and 1.59 and failing in the shear have been analyzed Using 'ANSYS'. The 'ANSYS' model accounts for the nonlinear phenomenon, such as, bond-slip of longitudinal reinforcements, post-cracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging of steel fibers at crack interlace. The concrete is modeled using 'SOLID65'-eight-node brick element, which is capable Of simulating the cracking and crushing behavior of brittle materials. The reinforcements such as deformed bars, prestressing wires and steel fibers have been modeled discretely Using 'LINK8' - 3D spar element. The slip between the reinforcement (rebar, fibers) and the concrete has been modeled using a 'COMBIN39'-non-linear spring element connecting the nodes of the 'LINK8' element representing the reinforcement and nodes of the 'SOLID65' elements representing the concrete. The 'ANSYS' model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. I-lie capability of the model to capture the critical crack regions, loads and deflections for various types Of shear failures ill prestressed concrete beam has been illustrated.