900 resultados para OBSERVATIONAL CONSTRAINTS
Resumo:
The determination of accurate chemical abundances of planetary nebulae (PN) in different galaxies allows us to obtain important constraints on chemical evolution models for these systems. We have a long-term program to derive abundances in the galaxies of the Local Group, particularly the Large and Small Magellanic Clouds. In this work, we present our new results on these objects and discuss their implications in view of recent abundance determinations in the literature. In particular, we obtain distance-independent correlations involving He, N, O, Ne, S, and Ar, and compare the results with data from our own Galaxy and other galaxies in the Local Group. As a result of our observational program, we have a large database of PN in the Galaxy and the Magellanic Clouds, so that we can obtain reliable constraints on the nucleosynthesis processes in the progenitor stars in galaxies of different metallicities.
Resumo:
P>Estimates of effective elastic thickness (T(e)) for the western portion of the South American Plate using, independently, forward flexural modelling and coherence analysis, suggest different thermomechanical properties for the same continental lithosphere. We present a review of these T(e) estimates and carry out a critical reappraisal using a common methodology of 3-D finite element method to solve a differential equation for the bending of a thin elastic plate. The finite element flexural model incorporates lateral variations of T(e) and the Andes topography as the load. Three T(e) maps for the entire Andes were analysed: Stewart & Watts (1997), Tassara et al. (2007) and Perez-Gussinye et al. (2007). The predicted flexural deformation obtained for each T(e) map was compared with the depth to the base of the foreland basin sequence. Likewise, the gravity effect of flexurally induced crust-mantle deformation was compared with the observed Bouguer gravity. T(e) estimates using forward flexural modelling by Stewart & Watts (1997) better predict the geological and gravity data for most of the Andean system, particularly in the Central Andes, where T(e) ranges from greater than 70 km in the sub-Andes to less than 15 km under the Andes Cordillera. The misfit between the calculated and observed foreland basin subsidence and the gravity anomaly for the Maranon basin in Peru and the Bermejo basin in Argentina, regardless of the assumed T(e) map, may be due to a dynamic topography component associated with the shallow subduction of the Nazca Plate beneath the Andes at these latitudes.
Resumo:
The kinematic expansion history of the universe is investigated by using the 307 supernovae type Ia from the Union Compilation set. Three simple model parameterizations for the deceleration parameter ( constant, linear and abrupt transition) and two different models that are explicitly parametrized by the cosmic jerk parameter ( constant and variable) are considered. Likelihood and Bayesian analyses are employed to find best fit parameters and compare models among themselves and with the flat Lambda CDM model. Analytical expressions and estimates for the deceleration and cosmic jerk parameters today (q(0) and j(0)) and for the transition redshift (z(t)) between a past phase of cosmic deceleration to a current phase of acceleration are given. All models characterize an accelerated expansion for the universe today and largely indicate that it was decelerating in the past, having a transition redshift around 0.5. The cosmic jerk is not strongly constrained by the present supernovae data. For the most realistic kinematic models the 1 sigma confidence limits imply the following ranges of values: q(0) is an element of [-0.96, -0.46], j(0) is an element of [-3.2,-0.3] and z(t) is an element of [0.36, 0.84], which are compatible with the Lambda CDM predictions, q(0) = -0.57 +/- 0.04, j(0) = -1 and z(t) = 0.71 +/- 0.08. We find that even very simple kinematic models are equally good to describe the data compared to the concordance Lambda CDM model, and that the current observations are not powerful enough to discriminate among all of them.
Resumo:
We propose a new class of accelerating world models unifying the cosmological dark sector (dark matter and dark energy). All the models are described by a simplified version of the Chaplygin gas quartessence cosmology. It is found that even for Omega(k) not equal 0, this quartessence scenario depends only on a pair of parameters which can severely be constrained by the cosmological tests. As an example we perform a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations. In our analysis we have considered the SNe type la Union sample compiled by Kowalski et al. [M. Kowalski et al., Astrophys. J. 686 (2008) 749, arXiv:0804.4142]. At 95.4% (c.l.), we find for BAD + Union sample, alpha = 0.81(-0.04)(+0.04) and Omega(Q4) = 1.15(-0.17)(+0.16) The best-fit for this simplified quartessence scenario is a spatially closed Universe and its reduced chi(2) is exactly the same of the flat concordance model (Lambda CDM). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The viability of two different classes of Lambda(t)CDM cosmologies is tested by using the APM 08279+5255, an old quasar at redshift z = 3.91. In the first class of models, the cosmological term scales as Lambda(t) similar to R(-n). The particular case n = 0 describes the standard Lambda CDM model whereas n = 2 stands for the Chen and Wu model. For an estimated age of 2 Gyr, it is found that the power index has a lower limit n > 0.21, whereas for 3 Gyr the limit is n > 0.6. Since n can not be so large as similar to 0.81, the Lambda CDM and Chen and Wu models are also ruled out by this analysis. The second class of models is the one recently proposed by Wang and Meng which describes several Lambda(t)CDM cosmologies discussed in the literature. By assuming that the true age is 2 Gyr it is found that the epsilon parameter satisfies the lower bound epsilon > 0.11 while for 3 Gyr, a lower limit of epsilon > 0.52 is obtained. Such limits are slightly modified when the baryonic component is included.
Resumo:
Evolutionary change in New World Monkey (NWM) skulls occurred primarily along the line of least resistance defined by size (including allometric) variation (g(max)). Although the direction of evolution was aligned with this axis, it was not clear whether this macroevolutionary pattern results from the conservation of within population genetic covariance patterns (long-term constraint) or long-term selection along a size dimension, or whether both, constraints and selection, were inextricably involved. Furthermore, G-matrix stability can also be a consequence of selection, which implies that both, constraints embodied in g(max) and evolutionary changes observed on the trait averages, would be influenced by selection Here, we describe a combination of approaches that allows one to test whether any particular instance of size evolution is a correlated by-product due to constraints (g(max)) or is due to direct selection on size and apply it to NWM lineages as a case study. The approach is based on comparing the direction and amount of evolutionary change produced by two different simulated sets of net-selection gradients (beta), a size (isometric and allometric size) and a nonsize set. Using this approach it is possible to distinguish between the two hypotheses (indirect size evolution due to constraints or direct selection on size), because although both may produce an evolutionary response aligned with g(max), the amount of change produced by random selection operating through the variance/covariance patterns (constraints hypothesis) will be much smaller than that produced by selection on size (selection hypothesis). Furthermore, the alignment of simulated evolutionary changes with g(max) when selection is not on size is not as tight as when selection is actually on size, allowing a statistical test of whether a particular observed case of evolution along the line of least resistance is the result of selection along it or not. Also, with matrix diagonalization (principal components [PC]) it is possible to calculate directly the net-selection gradient on size alone (first PC [PC1]) by dividing the amount of phenotypic difference between any two populations by the amount of variation in PC1, which allows one to benchmark whether selection was on size or not
Resumo:
In this article we propose a 0-1 optimization model to determine a crop rotation schedule for each plot in a cropping area. The rotations have the same duration in all the plots and the crops are selected to maximize plot occupation. The crops may have different production times and planting dates. The problem includes planting constraints for adjacent plots and also for sequences of crops in the rotations. Moreover, cultivating crops for green manuring and fallow periods are scheduled into each plot. As the model has, in general, a great number of constraints and variables, we propose a heuristics based on column generation. To evaluate the performance of the model and the method, computational experiments using real-world data were performed. The solutions obtained indicate that the method generates good results.
Resumo:
This article describes and compares three heuristics for a variant of the Steiner tree problem with revenues, which includes budget and hop constraints. First, a greedy method which obtains good approximations in short computational times is proposed. This initial solution is then improved by means of a destroy-and-repair method or a tabu search algorithm. Computational results compare the three methods in terms of accuracy and speed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests: (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We perform an analysis of the electroweak precision observables in the Lee-Wick Standard Model. The most stringent restrictions come from the S and T parameters that receive important tree level and one loop contributions. In general the model predicts a large positive S and a negative T. To reproduce the electroweak data, if all the Lee-Wick masses are of the same order, the Lee-Wick scale is of order 5 TeV. We show that it is possible to find some regions in the parameter space with a fermionic state as light as 2.4-3.5 TeV, at the price of rising all the other masses to be larger than 5-8 TeV. To obtain a light Higgs with such heavy resonances a fine-tuning of order a few per cent, at least, is needed. We also propose a simple extension of the model including a fourth generation of Standard Model fermions with their Lee-Wick partners. We show that in this case it is possible to pass the electroweak constraints with Lee-Wick fermionic masses of order 0.4-1.5 TeV and Lee-Wick gauge masses of order 3 TeV.
Resumo:
In the present work, the effects of spatial constraints on the efficiency of task execution in systems underlain by geographical complex networks are investigated, where the probability of connection decreases with the distance between the nodes. The investigation considers several configurations of the parameters defining the network connectivity, and the Barabasi-Albert network model is also considered for comparisons. The results show that the effect of connectivity is significant only for shorter tasks, the locality of connection simplied by the spatial constraints reduces efficiency, and the addition of edges can improve the efficiency of the execution, although with increasing locality of the connections the improvement is small.
Resumo:
The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Guarguaraz Complex, in western Argentina, comprises a metasedimentary assemblage, associated with mafic sills and ultramafic bodies intruded by basaltic dikes, which are interpreted as Ordovician dismembered ophiolites. Two kinds of dikes are recognized, a group associated with the metasediments and the other ophiolite-related. Both have N-MORB signatures, with epsilon(Nd) between +3.5 and +8.2, indicating a depleted source, and Grenville model ages between 0.99 and 1.62 Ga. A whole-rock Sm-Nd isochron yielded an age of 655 +/- 76 Ma for these mafic rocks, which is compatible with cianobacteria and acritarchae recognized in the clastic metasedimentary platform sequences, that indicate a Neoproterozoic (Vendian)-Cambrian age of deposition. The Guarguaraz metasedimentary-ophiolitic complex represents, therefore, a remnant of an oceanic basin developed to the west of the Grenville-aged Cuyania terrane during the Neoproterozoic. The southernmost extension of these metasedimentary sequences in Cordon del Portillo might represent part of this platform and not fragments of the Chilenia terrane. An extensional event related to the fragmentation of Rodinia is represented by the mafic and ultramafic rocks. The Devonian docking of Chilenia emplaced remnants of ocean floor and slices of the Cuyania terrane (Las Yaretas Gneisses) in tectonic contact with the Neoproterozoic metasediments, marking the Devonian western border of Gondwana. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the epsilon(k)-global minimization of the Augmented Lagrangian with simple constraints, where epsilon(k) -> epsilon. Global convergence to an epsilon-global minimizer of the original problem is proved. The subproblems are solved using the alpha BB method. Numerical experiments are presented.
Resumo:
Calculations of local influence curvatures and leverage have been well developed when the parameters are unrestricted. In this article, we discuss the assessment of local influence and leverage under linear equality parameter constraints with extensions to inequality constraints. Using a penalized quadratic function we express the normal curvature of local influence for arbitrary perturbation schemes and the generalized leverage matrix in interpretable forms, which depend on restricted and unrestricted components. The results are quite general and can be applied in various statistical models. In particular, we derive the normal curvature under three useful perturbation schemes for generalized linear models. Four illustrative examples are analyzed by the methodology developed in the article.