767 resultados para Nutrition Physiology.
Resumo:
Background: Personalised nutrition (PN) may provide major health benefits to consumers. A potential barrier to the uptake of PN is consumers’ reluctance to disclose sensitive information upon which PN is based. This study adopts the privacy calculus to explore how PN service attributes contribute to consumers’ privacy risk and personalisation benefit perceptions. Methods: Sixteen focus groups (n = 124) were held in 8 EU countries and discussed 9 PN services that differed in terms of personal information, communication channel, service provider, advice justification, scope, frequency, and customer lock-in. Transcripts were content analysed. Results: The personal information that underpinned PN contributed to both privacy risk perception and personalisation benefit perception. Disclosing information face-to-face mitigated the perception of privacy risk and amplified the perception of personalisation benefit. PN provided by a qualified expert and justified by scientific evidence increased participants’ value perception. Enhancing convenience, offering regular face-to face support, and employing customer lock-in strategies were perceived as beneficial. Conclusion: This study suggests that to encourage consumer adoption, PN has to account for face-to-face communication, expert advice providers, support, a lifestyle-change focus, and customised offers. The results provide an initial insight into service attributes that influence consumer adoption of PN.
Resumo:
To effectively prevent the onset and reduce mortality from noncommunicable diseases, we must consider every individual as metabolically unique to allow for a personalized management to take place. Diet and gut microbiota are major components of the exposome that interact together with a genetic make-up in a complex interplay to result in an individual’s metabolic phenotype. In this context, foodomics approaches (such as nutrigenetics, nutrimetabolomics, nutritranscriptomics, nutriproteomics and metagenomics) are essential tools to assess an individual’s optimal metabolic space. These have recently been applied to large human cohorts to identify specific gene-metabolite, diet-metabolite and gene–diet interactions. As the gut microbiota is a key player in metabolic homeostasis, we suggest following a holistic investigation of metagenome–hyperbolome–diet interactions, the findings of which will provide the basis for developing personalized nutrition and personalized functional foods. However, examining these three-way interactions will only be possible when the challenge of large datasets integration will be overcome.
Resumo:
Aims: This experiment aimed to determine whether the soil application of organic fertilizers can help the establishment of cacao and whether shade alters its response to fertilizers. Study Design: The 1.6 ha experiment was conducted over a period of one crop year (between April 2007 and March 2008) at the Cocoa Research Institute of Ghana. It involved four cacao genotypes (T 79/501, PA 150, P 30 [POS] and SCA 6), three shade levels (‘light’, ‘medium’ and ‘heavy’) and two fertilizer treatments (‘no fertilizer’, and ‘140 kg/ha of cacao pod husk ash (CPHA) plus poultry manure at 1,800 kg/ha). The experiment was designed as a split-plot with the cacao genotypes as the main plot factor and shade x fertilizer combinations as the sub-plots. Methodology: Gliricidia sepium and plantains (Musa sapientum) were planted in different arrangements to create the three temporary shade regimes for the cacao. Data were collected on temperature and relative humidity of the shade environments, initial soil nutrients, soil moisture, leaf N, P and K+ contents, survival, photo synthesis and growth of test plants. Results: The genotypes P 30 [POS] and SCA 6 showed lower stomatal conductance under non-limiting conditions. In the rainy seasons, plants under light shade had the highest CO2 assimilation rates. However, in the dry season, plants under increased shade recorded greater photosynthetic rates (P = .03). A significant shade x fertilizer interaction (P = .001) on photosynthesis in the dry season showed that heavier shade increases the benefits that young cacao gets from fertilizer application in that season. Conversely, shade should be reduced during the wet seasons to minimize light limitation to assimilation. Conclusion: Under ideal weather conditions young cacao exhibits genetic variability on stomatal conductance. Also, to optimize plant response to fertilizer application shade must be adjusted taking the prevailing weather condition into account.
Resumo:
Foods derived from animals are an important source of nutrients for humans. Concerns have been raised that due to their SFA content, dairy foods may increase the risk of cardiometabolic disease. Prospective studies do not indicate an association between milk consumption and increased disease risk although there are less data for other dairy foods. SFA in dairy products can be partially replaced by cis-MUFA through nutrition of the dairy cow although there are too few human studies to conclude that such modification leads to reduced chronic disease risk. Intakes of LCn-3 FA are sub-optimal in many countries and while foods such as poultry meat can be enriched by inclusion of fish oil in the diet of the birds, fish oil is expensive and has an associated risk that the meat will be oxidatively unstable. Novel sources of LCn-3 FA such as kirll oil, algae, and genetically modified plants may prove to be better candidates for meat enrichment. The value of FA-modified foods cannot be judged by their FA composition alone and there needs to be detailed human intervention studies carried out before judgements concerning improved health value can be made. Practical applications: The amount and FA composition of dietary lipids are known to contribute to the risk of chronic disease in humans which is increasing and becoming very costly to treat. The use of animal nutrition to improve the FA composition of staple foods such as dairy products and poultry meat has considerable potential to reduce chronic risk at population level although judgements must not be based simply on FA composition of the foods.
Resumo:
The p-nitrophenyl phosphomonoesterase assay (p NPPase) is commonly used to measure cell-wall-associated and extracellular phosphatase activity of soil fungi. p NPPases are usually assayed in the context of fungal nutrition, where inorganic P supply might be enhanced by the mineralisation of monoester organic P sources in the soil. The importance of the assay to the P nutrition of soil fungi is considered based on the evidence currently available including the consistency of methodological approach. The nature of organic P in the soil and the relevance of the assay to some specific soil substrates is discussed, particularly the chemistry and bioavailability of myo-inositol hexakisphosphate and the lower inositol phosphates. The evidence for the long-term stability of p NPPases in the soil is examined in the light of the persistence of p NPPase in soils. The role of persistent extracellular fungal p NPPases in the soil P cycle is discussed. Conclusions from p NPPase based studies must be based upon an appreciation of the constraints of the assay and the complex chemistry of organic P and p NPPase in the soil.
Resumo:
It is known that roots can respond to patches of fertility; however, root proliferation is often too slow to exploit resources fully, and organic nutrient patches may be broken down and leached, immobilized or chemically fixed before they are invaded by the root system. The ability of fungal hyphae to exploit resource patches is far greater than that of roots due to their innate physiological and morphological plasticity, which allows comprehensive exploration and rapid colonization of resource patches in soils. The fungal symbionts of ectomycorrhizal plants excrete significant quantities of enzymes such as chitinases, phosphatases and proteases. These might allow the organic residue to be tapped directly for nutrients such as N and P. Pot experiments conducted with nutrient-stressed ectomycorrhizal and control willow plants showed that when high quality organic nutrient patches were added, they were colonized rapidly by the ectomycorrhizal mycelium. These established willows (0.5 m tall) were colonized by Hebeloma syrjense P. Karst. for 1 year prior to nutrient patch addition. Within days after patch addition, colour changes in the leaves of the mycorrhizal plants (reflecting improved nutrition) were apparent, and after I month the concentration of N and P in the foliage of mycorrhizal plants was significantly greater than that in non-mycorrhizal plants subject to the same nutrient addition. It seems likely that the mycorrhizal plants were able to compete effectively with the wider soil microbiota and tap directly into the high quality organic resource patch via their extra-radical mycelium. We hypothesize that ectomycorrhizal plants may reclaim some of the N and P invested in seed production by direct recycling from failed seeds in the soil. The rapid exploitation of similar discrete, transient, high-quality nutrient patches may have led to underestimations when determining the nutritional benefits of ectomycorrhizal colonization.
Resumo:
The p-nitrophenol phosphomonoesterase assay (pNPPase) is commonly used to measure cell-wall-associated and extracellular phosphatase activity of soil fungi. pNPPases are usually assayed in the context of fungal nutrition, where inorganic P supply might be enhanced by the mineralisation of organic P sources in the soil. We report here on a series of experiments with the ectomycorrhizal basidiomycete Hebeloma cylindrosporum that highlight components of accepted methodology that might impinge on the reliability of the assay. These include the loss of pNPPase after filtration, inaccuracies in measuring wall-associated enzyme and the ample pool of intracellular pNPPase can be mistakenly measured as external pNPPase if cells are accidentally damaged.
Resumo:
Obesity prevalence is increasing. The management of this condition requires a detailed analysis of the global risk factors in order to develop personalised advice. This study is aimed to identify current dietary patterns and habits in Spanish population interested in personalised nutrition and investigate associations with weight status. Self-reported dietary and anthropometrical data from the Spanish participants in the Food4Me study, were used in a multidimensional exploratory analysis to define specific dietary profiles. Two opposing factors were obtained according to food groups’ intake: Factor 1 characterised by a more frequent consumption of traditionally considered unhealthy foods; and Factor 2, where the consumption of “Mediterranean diet” foods was prevalent. Factor 1 showed a direct relationship with BMI (β = 0.226; r2 = 0.259; p < 0.001), while the association with Factor 2 was inverse (β = −0.037; r2 = 0.230; p = 0.348). A total of four categories were defined (Prudent, Healthy, Western, and Compensatory) through classification of the sample in higher or lower adherence to each factor and combining the possibilities. Western and Compensatory dietary patterns, which were characterized by high-density foods consumption, showed positive associations with overweight prevalence. Further analysis showed that prevention of overweight must focus on limiting the intake of known deleterious foods rather than exclusively enhance healthy products.
Resumo:
The Hugh Sinclair Unit of Human Nutrition (HSUHN) at the University of Reading was founded in October 1995 with the appointment of Christine Williams OBE as the first Hugh Sinclair Chair in Human Nutrition. This was made possible by the competitively won funds from the estate and legacy of the late Professor Hugh Macdonald Sinclair (1910–1990). The vision for the newly established HSUHN was to ‘strengthen the evidence base for dietary recommendations for prevention of degenerative chronic diseases’. This has remained the research focus of the HSUHN under the leadership of Professors Christine Williams (1995–2005), Ian Rowland (2006–2013) and Julie Lovegrove (2014-present). Our mission is to improve population health and evaluate mechanisms of action for the effects of dietary components on health, which reflects Hugh Sinclair’s life ambition within nutritional science. Over the past 20 years, the HSUHN has developed an international reputation within the nutrition science community, and in recognition of the 20th anniversary, this paper highlights Hugh Sinclair’s contributions to the field of nutrition and key research achievements by members of the Unit.
Resumo:
Interactions between host nutrition and feeding behaviour are central to understanding the pathophysiological consequences of infections of the digestive tract with parasitic nematodes. The manipulation of host nutrition provides useful options to control gastrointestinal nematodes as a component of an integrated strategy. Focused mainly on the Hameonchus contortus infection model in small ruminants, this chapter (i) illustrates the relationship between quantitative (macro- and micro-nutrients) and qualitative (plant secondary metabolites) aspects of host nutrition and nematode infection, and (ii) shows how basic studies aimed at addressing some generic questions can help provide solutions, despite the considerable diversity of epidemiological situations and breeding systems.
Resumo:
Carbon emissions related to human activities have been significantly contributing to the elevation of atmospheric [CO(2)] and temperature. More recently, carbon emissions have greatly accelerated, thus much stronger effects on crops are expected. Here, we revise literature data concerning the physiological effects of CO(2) enrichment and temperature rise on crop species. We discuss the main advantages and limitations of the most used CO(2)-enrichment technologies, the Open-Top Chambers (OTCs) and the Free-Air Carbon Enrichment (FACE). Within the conditions expected for the next few years, the physiological responses of crops suggest that they will grow faster, with slight changes in development, such as flowering and fruiting, depending on the species. There is growing evidence suggesting that C(3) crops are likely to produce more harvestable products and that both C(3) and C(4) crops are likely to use less water with rising atmospheric [CO(2)] in the absence of stressful conditions. However, the beneficial direct impact of elevated [CO(2)] on crop yield can be offset by other effects of climate change, such as elevated temperatures and altered patterns of precipitation. Changes in food quality in a warmer, high-CO(2) world are to be expected, e.g., decreased protein and mineral nutrient concentrations, as well as altered lipid composition. We point out that studies related to changes in crop yield and food quality as a consequence of global climatic changes should be priority areas for further studies, particularly because they will be increasingly associated with food security. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The leaf is considered the most important vegetative organ of tank epiphytic bromeliads due to its ability to absorb and assimilate nutrients. However, little is known about the physiological characteristics of nutrient uptake and assimilation. In order to better understand the mechanisms utilized by some tank epiphytic bromeliads to optimize the nitrogen acquisition and assimilation, a study was proposed to verify the existence of a differential capacity to assimilate nitrogen in different leaf portions. The experiments were conducted using young plants of Vriesea gigantea. A nutrient solution containing NO(3)(-)/NH(4)(+) or urea as the sole nitrogen source was supplied to the tank of these plants and the activities of urease, nitrate reductase (NR), glutamine synthetase (GS) and glutamate dehydrogenase (NADH-GDH) were quantified in apical and basal leaf portions after 1, 3, 6, 9, 12, 24 and 48 h. The endogenous ammonium and urea contents were also analyzed. Independent of the nitrogen sources utilized, NR and urease activities were higher in the basal portions of leaves in all the period analyzed. On the contrary. GS and GDH activities were higher in apical part. It was also observed that the endogenous ammonium and urea had the highest contents detected in the basal region. These results suggest that the basal portion was preferentially involved in nitrate reduction and urea hydrolysis, while the apical region could be the main area responsible for ammonium assimilation through the action of GS and GDH activities. Moreover, it was possible to infer that ammonium may be transported from the base, to the apex of the leaves. In conclusion, it was suggested that a spatial and functional division in nitrogen absorption and NH(4)(+) assimilation between basal and apical leaf areas exists, ensuring that the majority of nitrogen available inside the tank is quickly used by bromeliad`s leaves. (C) 2011 Elsevier GmbH. All rights reserved.
Resumo:
Objectives: The goal of this study was to understand the relationship between economic change (wage labor, retirement, and the Bolsa Familia program) and dietary patterns in the rural Amazon and to determine the extent to which these changes followed the pattern of the nutrition transition. Methods: The study was longitudinal. The weighed-inventory method and economic interviews were used to collect data on dietary intake and household economics in a sample of 30 and 52 women in 2002 and 2009, respectively. Twenty of the women participated in both years and make-up the longitudinal sub-sample. Comparative statistics were used to identify changes in dietary patterns over time and multiple linear regressions were used to explore the relationship between economics, subsistence strategies, and diet. Results: There was a significant decline in kcal (P < 0.01) and carbohydrate (P < 0.01) but no change in protein intake over time in both the larger and smaller, longitudinal subsample. The percent of energy, carbohydrate, protein, and fat purchased increased in the larger and longitudinal samples (P <= 0.02) and there was an increase in refined carbohydrate and processed, fatty-meat consumption over time. The abandonment of manioc gardens was associated with increased dependence on purchased food (P = 0.03) while receipt of the Bolsa Familia was associated with increased protein intake and adequacy (P = 0.02). Conclusions: The dietary changes observed are only in partial agreement with predictions of the nutrition transition literature. The relationship between the economic and diet changes was shaped by the local context which should be considered when implementing CCT programs, like the Bolsa Familia. Am. J. Hum. Biol. 23:458-469, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Three species of phylogenetically related semi-terrestrial crabs (Superfamily Grapsoidea - Sesarma rectum, Goniopsis cruentata and Neohelice granulata (formerly: Chasmagnathus granulatus) with different degrees of terrestriality were studied to quantify the accumulation of copper (Cu) in hemolymph, gills, hepatopancreas and antennal gland, and its excretion through the faeces. These crabs were fed for 15 days practical diets containing 0 (A), 0.5 (B), 1.0 (C), and 1.5% (D) of added CuCl2 (corresponding to 0, 0.2, 0.5 and 0.7% of Cu2+, respectively). The amount of food ingested was directly proportional to the degree of terrestriality: S. rectum, the most terrestrial species, ate around 2-3 times more than the other crabs, whereas G. cruentata ate 1.5-2 times more than N. granulata, the least terrestrial. The amount of Cu excreted in the feces was proportional to Cu ingestion, and was 76.8% and 64.2% higher for Sesarma fed diet D compared to G. cruentata and N. granulata, respectively. Sesarma also displayed higher Cu concentration in the haemolymph, gills and antennal glands, but not in the hepatopancreas. A detoxifying mechanism followed by elimination was probably present at this last organ, preventing Cu accumulation. More terrestrial crabs, such as Sesarma, may accumulate more Cu in hemolymph and tissues, showing a correlation between metal accumulation and increased terrestriality. In this aspect, contaminated feed sources with Cu may have more impact in conservation of terrestrial crabs. (C) 2008 Elsevier Inc. All rights reserved.