958 resultados para Node


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the basic bidirectional relaying problem, in which two users in a wireless network wish to exchange messages through an intermediate relay node. In the compute-and-forward strategy, the relay computes a function of the two messages using the naturally occurring sum of symbols simultaneously transmitted by user nodes in a Gaussian multiple-access channel (MAC), and the computed function value is forwarded to the user nodes in an ensuing broadcast phase. In this paper, we study the problem under an additional security constraint, which requires that each user's message be kept secure from the relay. We consider two types of security constraints: 1) perfect secrecy, in which the MAC channel output seen by the relay is independent of each user's message and 2) strong secrecy, which is a form of asymptotic independence. We propose a coding scheme based on nested lattices, the main feature of which is that given a pair of nested lattices that satisfy certain goodness properties, we can explicitly specify probability distributions for randomization at the encoders to achieve the desired security criteria. In particular, our coding scheme guarantees perfect or strong secrecy even in the absence of channel noise. The noise in the channel only affects reliability of computation at the relay, and for Gaussian noise, we derive achievable rates for reliable and secure computation. We also present an application of our methods to the multihop line network in which a source needs to transmit messages to a destination through a series of intermediate relays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a continuum percolation model consisting of two types of nodes, namely legitimate and eavesdropper nodes, distributed according to independent Poisson point processes in R-2 of intensities lambda and lambda(E), respectively. A directed edge from one legitimate node A to another legitimate node B exists provided that the strength of the signal transmitted from node A that is received at node B is higher than that received at any eavesdropper node. The strength of the signal received at a node from a legitimate node depends not only on the distance between these nodes, but also on the location of the other legitimate nodes and an interference suppression parameter gamma. The graph is said to percolate when there exists an infinitely connected component. We show that for any finite intensity lambda(E) of eavesdropper nodes, there exists a critical intensity lambda(c) < infinity such that for all lambda > lambda(c) the graph percolates for sufficiently small values of the interference parameter. Furthermore, for the subcritical regime, we show that there exists a lambda(0) such that for all lambda < lambda(0) <= lambda(c) a suitable graph defined over eavesdropper node connections percolates that precludes percolation in the graphs formed by the legitimate nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new successive displacement type load flow method is developed in this paper. This algorithm differs from the conventional Y-Bus based Gauss Seidel load flow in that the voltages at each bus is updated in every iteration based on the exact solution of the power balance equation at that node instead of an approximate solution used by the Gauss Seidel method. It turns out that this modified implementation translates into only a marginal improvement in convergence behaviour for obtaining load flow solutions of interconnected systems. However it is demonstrated that the new approach can be adapted with some additional refinements in order to develop an effective load flow solution technique for radial systems. Numerical results considering a number of systems-both interconnected and radial, are provided to validate the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system under various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In geographical forwarding of packets in a large wireless sensor network (WSN) with sleep-wake cycling nodes, we are interested in the local decision problem faced by a node that has ``custody'' of a packet and has to choose one among a set of next-hop relay nodes to forward the packet toward the sink. Each relay is associated with a ``reward'' that summarizes the benefit of forwarding the packet through that relay. We seek a solution to this local problem, the idea being that such a solution, if adopted by every node, could provide a reasonable heuristic for the end-to-end forwarding problem. Toward this end, we propose a local relay selection problem consisting of a forwarding node and a collection of relay nodes, with the relays waking up sequentially at random times. At each relay wake-up instant, the forwarder can choose to probe a relay to learn its reward value, based on which the forwarder can then decide whether to stop (and forward its packet to the chosen relay) or to continue to wait for further relays to wake up. The forwarder's objective is to select a relay so as to minimize a combination of waiting delay, reward, and probing cost. The local decision problem can be considered as a variant of the asset selling problem studied in the operations research literature. We formulate the local problem as a Markov decision process (MDP) and characterize the solution in terms of stopping sets and probing sets. We provide results illustrating the structure of the stopping sets, namely, the (lower bound) threshold and the stage independence properties. Regarding the probing sets, we make an interesting conjecture that these sets are characterized by upper bounds. Through simulation experiments, we provide valuable insights into the performance of the optimal local forwarding and its use as an end-to-end forwarding heuristic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computing the maximum of sensor readings arises in several environmental, health, and industrial monitoring applications of wireless sensor networks (WSNs). We characterize the several novel design trade-offs that arise when green energy harvesting (EH) WSNs, which promise perpetual lifetimes, are deployed for this purpose. The nodes harvest renewable energy from the environment for communicating their readings to a fusion node, which then periodically estimates the maximum. For a randomized transmission schedule in which a pre-specified number of randomly selected nodes transmit in a sensor data collection round, we analyze the mean absolute error (MAE), which is defined as the mean of the absolute difference between the maximum and that estimated by the fusion node in each round. We optimize the transmit power and the number of scheduled nodes to minimize the MAE, both when the nodes have channel state information (CSI) and when they do not. Our results highlight how the optimal system operation depends on the EH rate, availability and cost of acquiring CSI, quantization, and size of the scheduled subset. Our analysis applies to a general class of sensor reading and EH random processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Sensor Networks have gained popularity due to their real time applications and low-cost nature. These networks provide solutions to scenarios that are critical, complicated and sensitive like military fields, habitat monitoring, and disaster management. The nodes in wireless sensor networks are highly resource constrained. Routing protocols are designed to make efficient utilization of the available resources in communicating a message from source to destination. In addition to the resource management, the trustworthiness of neighboring nodes or forwarding nodes and the energy level of the nodes to keep the network alive for longer duration is to be considered. This paper proposes a QoS Aware Trust Metric based Framework for Wireless Sensor Networks. The proposed framework safeguards a wireless sensor network from intruders by considering the trustworthiness of the forwarder node at every stage of multi-hop routing. Increases network lifetime by considering the energy level of the node, prevents the adversary from tracing the route from source to destination by providing path variation. The framework is built on NS2 Simulator. Experimental results show that the framework provides energy balance through establishment of trustworthy paths from the source to the destination. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid reconstruction of multidimensional image is crucial for enabling real-time 3D fluorescence imaging. This becomes a key factor for imaging rapidly occurring events in the cellular environment. To facilitate real-time imaging, we have developed a graphics processing unit (GPU) based real-time maximum a-posteriori (MAP) image reconstruction system. The parallel processing capability of GPU device that consists of a large number of tiny processing cores and the adaptability of image reconstruction algorithm to parallel processing (that employ multiple independent computing modules called threads) results in high temporal resolution. Moreover, the proposed quadratic potential based MAP algorithm effectively deconvolves the images as well as suppresses the noise. The multi-node multi-threaded GPU and the Compute Unified Device Architecture (CUDA) efficiently execute the iterative image reconstruction algorithm that is similar to 200-fold faster (for large dataset) when compared to existing CPU based systems. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flexray is a high speed communication protocol designed for distributive control in automotive control applications. Control performance not only depends on the control algorithm but also on the scheduling constraints in communication. A balance between the control performance and communication constraints must required for the choice of the sampling rates of the control loops in a node. In this paper, an optimum sampling period of control loops to minimize the cost function, satisfying the scheduling constraints is obtained. An algorithm to obtain the delay in service of each task in a node of the control loop in the hyper period has been also developed. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A safe, effective, and inexpensive vaccine against typhoid and other Salmonella diseases is urgently needed. In order to address this need, we are developing a novel vaccine platform employing buoyant, self-adjuvanting gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1, bioengineered to display highly conserved Salmonella enterica antigens. As the initial antigen for testing, we selected SopB, a secreted inosine phosphate effector protein injected by pathogenic S. enterica bacteria during infection into the host cells. Two highly conserved sopB gene segments near the 3'- region, named sopB4 and sopB5, were each fused to the grIpC gene, and resulting SopB-GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and SopB5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of SopB-GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ApmrG-H111-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-y, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Thl response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were also found to be stable at elevated temperatures for extended periods without refrigeration. The results show that bioengineered GVNPs are likely to represent a valuable platform for antigen delivery and development of improved vaccines against Salmonella and other diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report drain-extended MOS device design guidelines for the RF power amplifier (RF PA) applications. A complete RF PA circuit in a 28-nm CMOS technology node with the matching and biasing network is used as a test vehicle to validate the RF performance improvement by a systematic device design. A complete RF PA with 0.16-W/mm power density is reported experimentally. By simultaneous improvement of device-circuit performance, 45% improvement in the circuit RF power gain, 25% improvement in the power-added efficiency at 1-GHz frequency, and 5x improvement in the electrostatic discharge robustness are reported experimentally.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Free vibration problem of a rotating Euler-Bernoulli beam is solved with a truly meshless local Petrov-Galerkin method. Radial basis function and summation of two radial basis functions are used for interpolation. Radial basis function satisfies the Kronecker delta property and makes it simpler to apply the essential boundary conditions. Interpolation with summation of two radial basis functions increases the node carrying capacity within the sub-domain of the trial function and higher natural frequencies can be computed by selecting the complete domain as a sub-domain of the trial function. The mass and stiffness matrices are derived and numerical results for frequencies are obtained for a fixed-free beam and hinged-free beam simulating hingeless and articulated helicopter blades. Stiffness and mass distribution suitable for wind turbine blades are also considered. Results show an accurate match with existing literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the development and testing of an integrated low-power and low-cost dual-probe heat-pulse (DPHP) soil-moisture sensor in view of the electrical power consumed and affordability in developing countries. A DPHP sensor has two probes: a heater and a temperature sensor probe spaced 3 mm apart from the heater probe. Supply voltage of 3.3V is given to the heater-coil having resistance of 33 Omega power consumption of 330 mW, which is among the lowest in this category of sensors. The heater probe is 40 mm long with 2 mm diameter and hence is stiff enough to be inserted into the soil. The parametric finite element simulation study was performed to ensure that the maximum temperature rise is between 1 degrees C and 5 degrees C for wet and dry soils, respectively. The discrepancy between the simulation and experiment is less than 3.2%. The sensor was validated with white clay and tested with red soil samples to detect volumetric water-content ranging from 0% to 30%. The sensor element is integrated with low-power electronics for amplifying the output from thermocouple sensor and TelosB mote for wireless communication. A 3.7V lithium ion battery with capacity of 1150 mAh is used to power the system. The battery is charged by a 6V and 300 mA solar cell array. Readings were taken in 30 min intervals. The life-time of DPHP sensor node is around 3.6 days. The sensor, encased in 30 mm x 20 mm x 10 mm sized box, and integrated with electronics was tested independently in two separate laboratories for validating as well as investigating the dependence of the measurement of soil-moisture on the density of the soil. The difference in the readings while repeating the experiments was found out to be less than 0.01%. Furthermore, the effect of ambient temperature on the measurement of soil-moisture is studied experimentally and computationally. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of apoptosis signal regulating kinase 1 (ASK1)-p38 MAPK death signaling cascade is irn plicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream 1)38 MAPK in a time dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thiorcdoxin (Trxl), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase ji 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein ovariation netvvork analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mecliated TNF signaling through intrathecal administration of TNFneutralizing antibody prevented Trxl oxidation and downstream ASK1-p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1-p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states. (C) 2015 Published by Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we study two multi-dimensional Goodness-of-Fit tests for spectrum sensing in cognitive radios. The multi-dimensional scenario refers to multiple CR nodes, each with multiple antennas, that record multiple observations from multiple primary users for spectrum sensing. These tests, viz., the Interpoint Distance (ID) based test and the h, f distance based tests are constructed based on the properties of stochastic distances. The ID test is studied in detail for a single CR node case, and a possible extension to handle multiple nodes is discussed. On the other hand, the h, f test is applicable in a multi-node setup. A robustness feature of the KL distance based test is discussed, which has connections with Middleton's class A model. Through Monte-Carlo simulations, the proposed tests are shown to outperform the existing techniques such as the eigenvalue ratio based test, John's test, and the sphericity test, in several scenarios.