949 resultados para Nitric oxide synthase 3 polymorphisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to investigate the effect of a single intravitreal (i.v.t.) injection of vasoactive intestinal peptide (VIP) loaded in rhodamine-conjugated liposomes (VIP-Rh-Lip) on experimental autoimmune uveoretinitis (EAU). METHODS: An i.v.t. injection of VIP-Rh-Lip, saline, VIP, or empty-(E)-Rh-Lip was performed simultaneously, either 6 or 12 days after footpad immunization with retinal S-antigen in Lewis rats. Clinical and histologic scores were determined. Immunohistochemistry and cytokine quantification by multiplex enzyme-linked immunosorbent assay were performed in ocular tissues. Systemic immune response was determined at day 20 postimmunization by measuring proliferation and cytokine secretion of cells from inguinal lymph nodes (ILNs) draining the immunization site, specific delayed-type hypersensitivity (DTH), and the serum concentration of cytokines. Ocular and systemic biodistribution of VIP-Rh-Lip was studied in normal and EAU rats by immunofluorescence. RESULTS: The i.v.t. injection of VIP-Rh-Lip performed during the afferent, but not the efferent, phase of the disease reduced clinical EAU and protected against retinal damage. No effect was observed after saline, E-Rh-Lip, or VIP injection. VIP-Rh-Lip and VIP were detected in intraocular macrophages and in lymphoid organs. In VIP-Rh-Lip-treated eyes, macrophages expressed transforming growth factor-beta2, low levels of major histocompatibility complex class II, and nitric oxide synthase-2. T-cells showed activated caspase-3 with the preservation of photoreceptors. Intraocular levels of interleukin (IL)-2, interferon-gamma (IFN-gamma), IL-17, IL-4, GRO/KC, and CCL5 were reduced with increased IL-13. At the systemic level, treatment reduced retinal soluble autoantigen lymphocyte proliferation, decreased IL-2, and increased IL-10 in ILN cells, and diminished specific DTH and serum concentration of IL-12 and IFN-gamma. CONCLUSIONS: An i.v.t. injection of VIP-Rh-Lip, performed during the afferent stage of immune response, reduced EAU pathology through the immunomodulation of intraocular macrophages and deviant stimulation of T-cells in ILN. Thus, the encapsulation of VIP within liposomes appears as an effective strategy to deliver VIP into the eye and is an efficient means of the prevention of EAU severity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the study was to evaluate the tissue oxygenation and hemodynamic effects of NOS inhibition in clinical severe septic shock. Eight patients with septic shock refractory to volume loading and high level of adrenergic support were prospectively enrolled in the study. Increasing doses of NOS inhibitors [N(G)-nitro-L-arginine-methyl ester (L-NAME) or N(G)-monomethyl-L-arginine (L-NMMA)] were administered as i.v. bolus until a peak effect = 10 mmHg on mean blood pressure was obtained or until side effects occurred. If deemed clinically appropriate, a continuous infusion of L-NAME was instituted and adrenergic support weaning attempted. The bolus administration of NOS inhibitors transiently increased mean blood pressure by 10 mm Hg in all patients. Seven out of eight patients received an L-NAME infusion, associated over 24 h with a progressive decline in cardiac index (P < 0.001) and an increase in systemic vascular resistance (P < 0.01). Partial or total adrenergic support weaning was rapidly possible in 6/8 patients. Oxygen transport decreased (P < 0.001), but oxygen consumption remained unchanged in those patients in whom it could be measured by indirect calorimetry (5/8). Blood lactate and the difference between tonometric gastric and arterial PCO2 remained unchanged. There were 4/8 ICU survivors. We conclude that nitric oxide synthase inhibition in severe septic shock was followed with a progressive correction of the vasoplegic hemodynamic disturbances with finally normalization of cardiac output and systemic vascular resistances without any demonstrable deterioration in tissue oxygenation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Slight differences in physiological responses and nitric oxide (NO) have been reported at rest between hypobaric hypoxia (HH) and normobaric hypoxia (NH) during short exposure.Our study reports NO and oxidative stress at rest and physiological responses during moderate exercise in HH versus NH. METHODS: Ten subjects were randomly exposed for 24 h to HH (3000 m; FIO2, 20.9%; BP, 530 ± 6 mm Hg) or to NH (FIO2, 14.7%; BP, 720 ± 1 mm Hg). Before and every 8 h during the hypoxic exposures, pulse oxygen saturation (SpO2), HR, and gas exchanges were measured during a 6-min submaximal cycling exercise. At rest, the partial pressure of exhaled NO, blood nitrate and nitrite (NOx), plasma levels of oxidative stress, and pH levels were additionally measured. RESULTS: During exercise, minute ventilation was lower in HH compared with NH (-13% after 8 h, P < 0.05). End-tidal CO2 pressure was lower (P < 0.01) than PRE both in HH and NH but decreased less in HH than that in NH (-25% vs -37%, P < 0.05).At rest, exhaled NO and NOx decreased in HH (-46% and -36% after 24 h, respectively, P < 0.05) whereas stable in NH. By contrast, oxidative stress was higher in HH than that in NH after 24 h (P < 0.05). The plasma pH level was stable in HH but increased in NH (P < 0.01). When compared with prenormoxic values, SpO2, HR, oxygen consumption, breathing frequency, and end-tidal O2 pressure showed similar changes in HH and NH. CONCLUSION: Lower ventilatory responses to a similar hypoxic stimulus during rest and exercise in HH versus NH were sustained for 24 h and associated with lower plasma pH level, exaggerated oxidative stress, and impaired NO bioavailability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies demonstrate an association between insulin resistance, hypertension and cardiovascular morbidity. In addition to its metabolic effects, insulin also has important cardiovascular actions. The sympathetic nervous system and the nitric oxide-l-arginine pathway have emerged as central players in the mediation of these actions. Over the past decade, the underlying mechanisms and the factors that may govern the interaction between insulin and these two major cardiovascular regulatory systems have been studied extensively in healthy people and insulin-resistant individuals. Here we summarize the current understanding and gaps in knowledge on these interactions. We propose that a genetic and/or acquired defect of nitric oxide synthesis could represent a central defect triggering many of the metabolic, vascular and sympathetic abnormalities characteristic of insulin-resistant states, all of which may predispose to cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposing the human bronchial epithelial cell line BEAS-2B to the nitric oxide (NO) donor sodium 1-(N,N-diethylamino)diazen-1-ium-1, 2-diolate (DEA/NO) at an initial concentration of 0.6 mM while generating superoxide ion at the rate of 1 microM/min with the hypoxanthine/xanthine oxidase (HX/XO) system induced C:G-->T:A transition mutations in codon 248 of the p53 gene. This pattern of mutagenicity was not seen by 'fish-restriction fragment length polymorphism/polymerase chain reaction' (fish-RFLP/PCR) on exposure to DEA/NO alone, however, exposure to HX/XO led to various mutations, suggesting that co-generation of NO and superoxide was responsible for inducing the observed point mutation. DEA/NO potentiated the ability of HX/XO to induce lipid peroxidation as well as DNA single- and double-strand breaks under these conditions, while 0.6 mM DEA/NO in the absence of HX/XO had no significant effect on these parameters. The results show that a point mutation seen at high frequency in certain common human tumors can be induced by simultaneous exposure to reactive oxygen species and a NO source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species can initiate carcinogenesis by virtue of their capacity to react with DNA and cause mutations. Recently, it has been suggested that nitric oxide (NO) and its derivatives produced in inflamed tissues could contribute to the carcinogenesis process. Genotoxicity of NO follows its reaction with oxygen and superoxide. It can be due either to direct DNA damage or indirect DNA damage. Direct damage includes DNA base deamination, peroxynitrite-induced adducts formation and single strand breaks in the DNA. Indirect damage is due to the interaction of NO reactive species with other molecules such as amines, thiols and lipids. The efficiency of one pathway or another might depend on the cellular antioxidant status or the presence of free metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role played by lung dendritic cells (DCs) which are influenced by external antigens and by their redox state in controlling inflammation is unclear. We studied the role played by nitric oxide (NO) in DC maturation and function. Human DCs were stimulated with a long-acting NO donor, DPTA NONOate, prior to exposure to lipopolysaccharide (LPS). Dose-and time-dependent experiments were performed with DCs with the aim of measuring the release and gene expression of inflammatory cytokines capable of modifying T-cell differentiation, towardsTh1, Th2 and Th17 cells. NO changed the pattern of cytokine release by LPS-matured DCs, dependent on the concentration of NO, as well as on the timing of its addition to the cells during maturation. Addition of NO before LPS-induced maturation strongly inhibited the release of IL-12, while increasing the expression and release of IL-23, IL-1β and IL-6, which are all involved in Th17 polarization. Indeed, DCs treated with NO efficiently induced the release of IL-17 by T-cells through IL-1β. Our work highlights the important role that NO may play in sustaining inflammation during an infection through the preferential differentiation of the Th17 lineage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: The aim of this study was to evaluate serum levels of inducible nitric oxide synthase (INOS), myeloperoxidase (MPO), total antioxidant status (TAS), and total oxidative status (TOS) in women with primary ovarian insufficiency (POI) and to compare them with healthy fertile women. We also examined the possible risk factors associated with POI.METHODS: This cross-sectional case control study was conducted in Zekai Tahir Burak Women's Health Education and Research Hospital. The study population consisted of 44 women with POI (study group) and 36 healthy fertile women (control group). In all patients, serum levels of INOS, MPO, TAS, and TOS were determined. INOS and MPO levels were measured by enzyme-linked immunosorbent assay whereas colorimetric method was used for evaluating TAS and TOS levels. Age, body mass index (BMI), obstetric history, smoking status, family history, comorbidities, sonographic findings, complete blood count values, C-reactive protein and baseline hormone levels were also analyzed. Student's t-test or Mann-Whitney U test was used to compare continuous variables between the groups; categorical data were evaluated by using Pearson χ2 or Fisher exact test, when appropriate. Binary logistic regression method was used to identify risk factors for POI.RESULTS: We found significantly elevated levels of INOS (234.1±749.5 versus133.8±143.0; p=0.005), MPO (3,438.7±1,228.6 versus 2,481.9±1,230.1; p=0.001), and TOS (4.3±1.4 versus 3.6±1.4; p=0.02) in the sera of the study group when compared to the BMI-age matched control group. However, difference in serum levels of TAS were not significant between the 2 groups (1.7±0.2 versus 1.6±0.2; p=0.15). Logistic regression method demonstrated that BMI <25 kg/m2, nulliparity, family history of POI, smoking, and elevated serum levels of INOS, MPO, and TOS were independent risk factors for POI.CONCLUSION: We found an increase in INOS, MPO, and TOS in women with POI. These serum markers may be promising in early diagnosis of POI. Further large-scale studies are required to determine whether oxidative stress markers have a role in diagnosing POI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactofen is a diphenylether herbicide recommended to control broad-leaved weeds in soybean (Glycine max) fields and its mechanism of action is the inhibition of protoporphyrinogen-IX oxidase (Protox), which acts in the chlorophyll biosynthesis. This inhibition results in an accumulation of protoporphyrin-IX, which leads to the production of reactive oxygen species (ROS) that cause oxidative stress. Consequently, spots, wrinkling and leaf burn may occur, resulting in a transitory crop growth interruption. However, nitric oxide (NO) acts as an antioxidant in direct ROS scavenging. Thus, the aim of this work was to verify, through phytometric and biochemical evaluations, the protective effect of NO in soybean plants treated with the herbicide lactofen. Soybean plants were pre-treated with different levels of sodium nitroprusside (SNP), a NO-donor substance, and then sprayed with 168 g a.i. ha-1 lactofen. Pre-treatment with SNP was beneficial because NO decreased the injury symptoms caused by lactofen in young leaflets and kept low the soluble sugar levels. Nevertheless, NO caused slower plant growth, which indicates that further studies are needed in order to elucidate the action mechanisms of NO in signaling the stress caused by lactofen in soybean crop.