888 resultados para Multi-Phase Flow


Relevância:

30.00% 30.00%

Publicador:

Resumo:

InGaN/GaN multi-quantum-well blue (461 +/- 4 nm) light emitting diodes with higher electroluminescence intensity are obtained by postgrowth thermal annealing at 720 C in O-2-ambient. Based on our first-principle total-energy calculations, we conclude that besides dissociating the Mg-H complex by forming H2O, annealing in O-2 has another positive effect on the activation of acceptor Mg in GaN. Mg can be further activated by the formation of an impurity band above the valence band maximum of host GaN from the passivated Mg-Ga-O-N complex. Our calculated ionization energy for acceptor Mg in the passivated system is about 30 meV shallower than that in pure GaN, in good agreement with previous experimental measurement. Our model can explain that the enhanced electroluminescence intensity of InGaN/GaN MQWs based on Mg-doped p-type GaN is due to a decrease in the ionization energy of Mg acceptor with the presence of oxygen. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystalline, surface, and optical properties of the (10 (1) over bar(3) over bar) semipolar GaN directly grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) were investigated. It was found that the increase of V/III ratio led to high quality (10 (1) over bar(3) over bar) oriented GaN epilayers with a morphology that may have been produced by step-flow growth and with minor evidence of anisotropic crystalline structure. After etching in the mixed acids, the inclined pyramids dominated the GaN surface with a density of 2 X 10(5) cm(-2), revealing the N-polarity characteristic. In the low-temperature PL spectra, weak BSF-related emission at 3.44eV could be observed as a shoulder of donor-bound exciton lines for the epilayer at high V/III ratio, which was indicative of obvious reduction of BSFs density. In comparison with other defect related emissions, a different quenching behavior was found for the 3.29 eV emission, characterized by the temperature-dependent PL measurement. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We numerically investigate the main constrains for high efficiency wavelength conversion of differential phase-shift keying (DPSK) signals based on four-wave mixing (FWM) in highly nonlinear fiber (HNLF). Using multi-tone pump phase modulation techniques, high efficiency wavelength conversion of DPSK signals is achieved with the stimulated Brillouin scattering (SBS) effects effectively suppressed. Our analysis shows that there is a compromise between conversion efficiency and converted idler degradation. By optimizing the pump phase modulation configuration, the converted DPSK idler's degradation can be dramatically decreased through balancing SBS suppression and pump phase modulation degradation. Our simulation results also show that these multi-tone pump phase modulation techniques are more appropriate for the future high bit rate systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Selective area growth (SAG) of GaN on SiO2 stripe-patterned GaN/GaAs(001) substrates was carried out by metalorganic vapor-phase epitaxy. The SAG samples were investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations showed that the morphology of SAG GaN is strongly dependent on the window stripe orientation and slightly affected by the orientation relationship between the window stripes and the gas flow. The (I 1 1)B sidewalls formed on the SAG GaN stripes are found to be stable. XRD measurements indicated the full-widths at half-maximum (FWHMs) of cubic GaN (0 0 2) rocking curves are reduced after SAG. The measured FWHMs with omega-axis parallel to [1(1) over bar 0] are always larger than the FWHM values obtained with omega-axis parallel to [I 10], regardless of the orientation relationship between the w-axis and the GaN stripes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth rate of GaN buffer layers on sapphire grown by metalorganic vapor-phase epitaxy (MOVPE) in an atmospheric pressure, two-channel reactor was studied. The growth rate, as measured using laser reflectance, was found to be dependent on growth temperature, molar flow rate of the sources tin this case, trimethylgallium and ammonia) and the input configuration of sources into the reactor. A model of the GaN buffer layer growth process by MOVPE is proposed to interpret the experimental evidence. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The semiconductor-metal transition of vanadium dioxide (VO2) thin films epitaxially grown on C-plane sapphire is studied by depositing Au nanoparticles onto the thermochromic films forming a metal-semiconductor contact, namely, a nano-Au-VO2 junction. It reveals that Au nanoparticles have a marked effect on the reduction in the phase transition temperature of VO2. A process of electron injection in which electrons flow from Au to VO2 due to the lower work function of the metal is believed to be the mechanism. The result may support the Mott-Hubbard phase transition model for VO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A low-power, highly linear, multi-standard, active-RC filter with an accurate and novel tuning architec-ture is presented. It exhibits 1EEE 802. 11a/b/g (9.5 MHz) and DVB-H (3 MHz, 4 MHz) application. The filter exploits digitally-controlled polysilicon resistor banks and a phase lock loop type automatic tuning system. The novel and complex automatic frequency calibration scheme provides better than 4 comer frequency accuracy, and it can be powered down after calibration to save power and avoid digital signal interference. The filter achieves OIP3 of 26 dBm and the measured group delay variation of the receiver filter is 50 ns (WLAN mode). Its dissipation is 3.4 mA in RX mode and 2.3 mA (only for one path) in TX mode from a 2.85 V supply. The dissipation of calibration consumes 2 mA. The circuit has been fabricated in a 0.35μm 47 GHz SiGe BiCMOS technology; the receiver and transmitter filter occupy 0.21 mm~2 and 0.11 mm~2 (calibration circuit excluded), respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermodynamic model for the GaSb-GaCl3 system in a closed quartz ampoule was proposed. The species in the gas phase are GaCl, GaCl3, Sb-4, Sb-2. The partial pressures of these species and total pressure in the ampoule have been calculated. The calculated results indicate that the equilibrium partial pressures of GaCl, GaCl3, Sb4, Sb2 and the total pressure in the ampoule have strong dependence on temperature, free volume inside the closed ampoule and amount of transport agent GaCl3. The total pressure will give strong influence not only on the flow pattern in the ampoule, but also on the uniformity of the epilayer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical simulations of the multi-shock interactions observable around hypersonic vehicles were carried out by solving Navier-Stokes equations with the AUSMPW scheme and the new type of the IV interaction created by two incident shock waves was investigated in detail. Numerical results show that the intersection point of the second incident shock with the bow shock plays important role on the flow pattern, peak pressures and heat fluxes. In the case of two incident shocks interacting with the bow shock at the same position, the much higher peak pressure and more severe heat transfer rate are induced than the classical IV interaction. The phenomenon is referred to as the multi-shock interaction and higher requirements will be imposed on thermal protection systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Locked-to-sliding phase transition has been studied in the driven two-dimensional Frenkel-Kontorova model with the square symmetric substrate potential. It is found that as the driving force increases, the system transfers from the locked state to the sliding state where the motion of particles is in the direction different from that of driving force. With the further increase in driving force, at some critical value, the particles start to move in the direction of driving force. These two critical forces, the static friction or depinning force, and the kinetic friction force for which particles move in the direction of driving force have been analyzed for different system parameters. Different scenarios of phase transitions have been examined and dynamical phases are classified. In the case of zero misfit angle, the analytical expressions for static and kinetic friction force have been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K-S(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K-S(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N-part. This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A capillary electrochromatography (CEC) monolithic column with zwitterionic stationary phases was prepared by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, methacrylic acid, and 2-(dimethyl amino) ethyl methacrylate in the presence of porogens. The stationary phases have zwitterionic functional groups, that is, both tertiary amine and acrylic acid groups, so the ionization of those groups on the zwitterionic stationary phase was affected by the pH values of the mobile phase, and further affects the strength and direction of the electroosmotic flow (EOF). Separations of alkylbenzenes and polycylic aromatic hydrocarbons based on the hydrophobic mechanism were obtained. Separation of various types of polar compounds, including phenols, anilines, and peptides, on the prepared column were performed under CEC mode with anodic and cathodic EOF, and different separation selectivities of those polar analytes were observed on the monolithic capillary column by using mobile phases with different pH values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cellulose trisphenylcarbamate-bonded chiral stationary phase was applied to nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) with nonaqueous and aqueous solutions as the mobile phases. Several chiral compounds were successfully resolved on the prepared phase by nano-LC. The applicability of nonaqueous CEC on a cellulose derivative stationary phase was investigated with the organic solvents methanol, hexane, 2-propanol, and tetrahydrofuran (THF) containing acetic acid, as well as triethylamine as the mobile phases. Enantiomers of warfarin and praziquantel were baseline-resolved with plate numbers of 82 300 and 38 800 plates/m, respectively, for the first eluting enantiomer. The influence of applied voltage, concentration of nonpolar solvent, apparent pH, and buffer concentration in the mobile phase on the electroosmotic flow (EOF) and the mobility of the enantiomers was evaluated. Enantioseparations of traps-stilbene oxide and praziquantel were also achieved in aqueous CEC with plate numbers of 111 100 and 107 400 plates/m, respectively, for the first eluting enantiomer. A comparison between nonaqueous CEC and aqueous CEC based on a cellulose trisphenylcarbamate stationary phase was discussed. Pressure-assisted CEC was examined for the chiral separation of praziquantel and faster analysis with high enantioselectivity was acquired with the proper pressurization of the inlet vial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mixed mode of reversed phase (RP) and strong canon-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for to and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.