955 resultados para MURINE PERITONEAL-MACROPHAGES
Resumo:
Summary : The purpose of this study was to investigate the role of the inflammasome in human and experimental murine models (such as ΑΙΑ and K/BxN) of rheumatoid arthritis (RA)RA, affecting 1% of the population is the most frequent inflammatory disease characterized by synovial hyperplasia and cartilage and bone erosion, leading to joint destruction. In general, women are 3 times more affected by RA suggesting a role of estrogen in this disease. The inflammasome is a multiproteic complex triggering the activation of caspase-1 leading to the activation of IL-1 β, an important pro-inflammatory cytokine implicated in arthritis. The inflammasome has been implicated in several inflammatory diseases and particularly in gout. To highlight a possible role of the inflammasome in murine arthritis, we obtained ASC, caspase-1 and NALP3 +/+ and -/- littermate mice to perform ΑΙΑ and K/BxN arthritis. NALP3 -/- and caspase-1 -/- mice were as arthritic as wild type littermate mice in both ΑΙΑ and K/BxN models implicating that the NALP3 inflammasome is not involved in experimental arthritis. By contrast, ΑΙΑ severity was significantly diminished in ASC- deficient male and female mice, and in the K/BxN model, in ASC-deficient female mice. These results were supported by histological scoring and acute phase protein serum amyloid A (SAA) levels that were equivalent between NALP+/+ and NALP3-/- mice and diminished in ASC -/- mice. In ΑΙΑ and K/BxN murine experimental models, we observed a sexdependent phenotype. We studied the role of estradiol in both the ALA and the K/BxN models. Castrated female or male ASC -/- mice that received estradiol had a decreased arthritis severity. This implies a protective role of estrogen in the absence of ASC. In the ΑΙΑ model, proliferation assay were performed using splenocytes from mBSA- immunized ASC +/+ and -/- mice. The mBSA-induced proliferation was significantly lower in ASC-/- splenocytes. Moreover the CD3-specific proliferation of purified splenic Τ cells was significantly lower in ASC-/- cells. Finally, Τ cells from ASC-/- mice produced significantly decreased levels of IFN-gamma associated with increased levels of IL-10. These results imply a possible role of ASC in the TCR-signaling pathway and Τ cell cytokine production. In parallel the expression of the different inflammasome components were analyzed in biopsies from rheumatoid arthritis (RA) and osteoarthritis (OA) patiens. The expression of the 14 different NALPs, their effector protein ASC, and caspase-1 and -5 was readily measurable by RT-PCR in a similar proportion in RA and OA synovial samples, with the exception of NALP-5 and NALP-13, which weren't found in samples from either disease. The corresponding NALP1, -3, -12 and ASC proteins were expressed at similar levels in both OA and RA biopsies, as determined by immunohistochemistry and Western-blot analysis. By contrast, caspase-1 levels were significantly enhanced in RA synovial tissues compared to those from OA patients. NALP-1, -2, -3, -10, -12 and -14, as well as ASC, caspase-1, and -5 were detected in RNA from unstimulated and stimulated RA synoviocytes. In FLS, only ASC and caspase-1 were expressed at the protein level. NALP1, 3 and 12 were not detected. However, upon stimulation, no secreted IL-Ιβ was detectable in either RA or in OA synoviocytes culture medium. Résumé : Le but de ce projet était d'étudier le rôle de l'inflammasome dans des modèles expérimentaux d'arthrite tels que les modèles ΑΙΑ et K/BxN ainsi que dans la polyarthrite humaine (RA). La polyarthrite est une maladie inflammatoire très fréquente avec 1 % de la population affectée et touche 3 fois plus les femmes que les hommes, suggérant un rôle des hormones sexuelles dans cette pathologie. L'inflammasome est un complexe multiprotéique qui permet l'activation de la caspase-1, une cystéine protéase qui va ensuite cliver et activer rinterleukine-ΐβ (IL-Ιβ). L'inflammasome a été impliqué ces dernières années dans de nombreuses maladies inflammatoires notamment dans la goutte. Pour mettre en évidence un éventuel rôle de l'inflammasome dans l'arthrite expérimentale nous avons obtenu des souris déficientes pour certains des composants de l'inflammasome tels que ASC, NALP3 et caspase-1. Les souris NALP3 déficientes et caspase-1 déficientes sont aussi arthritiques que les souris wild type correspondantes que ce soit dans le modèle ΑΙΑ ou K/BxN. Par contre les souris mâles et femelles ASC-déficientes sont moins arthritiques que les souris +/+ correspondantes dans le modèle ΑΙΑ. Dans le modèle KRN, le même phénotype (diminution de la sévérité de l'arthrite) est observé uniquement chez les femelles ASC-/- Ce phénotype est corrélé avec l'histologie ainsi qu'avec le dosage du serum amyloid A (SAA) qui reflète l'inflammation systémique et qui est diminué chez les souris ASC-déficientes. Nous avons ensuite étudié le rôle de Γ estradiol (une des formes active des estrogènes) dans les modèles K/BxN et ΑΙΑ. Les souris castrées maies ou femelles déficientes pour ASC ayant reçu de l'estradiol ont une arthrite moins sévère ce qui implique que les estradiol ont un effet protecteur en l'absence de ASC. Dans le modèle ΑΙΑ, nous nous sommes aussi intéressés à la réponse immune. Des tests de prolifération ont été effectués sur des splénocytes en présence de mBSA (qui est l'antigène utilisé dans le modèle ΑΙΑ). Les splénocytes ASC -/- ont une proliferation qui est diminuée en présence de l'antigène. De plus la proliferation de cellules Τ spléniques purifiées en présence d'anti-CD3 est diminuée chez les cellules Τ ASC-/-. Ces résultats nous indiquent une éventuelle implication de ASC dans la signalisation par le récépteur des cellules T. En parallèle l'expression des différents composants de l'inflammasome a été analysée dans des biopsies de patients atteints de polyarthrite rhumatoide (RA) et d'arthrose (OA). L'expression des 14 différents NALPs, de l'adaptateur ASC, ainsi que des caspase-1 et -5 était similaires dans les échantillons RA et OA, à l'exception de NALP5 et 13 qui n'étaient pas détéctables. L'expression protéique de NALP1, 3, 12 et ASC effectuée par Western blot et immunohistochimie était similaire dans les biopsies RA et OA. Par contre la quantité de la caspase-1 mesurée par ELISA était augmentée de façon significative dans les extraits protéiques de biopsies RA. NALP-1, -2. -3, -10, -12, and -14 ainsi que ASC, caspase-1 et -5 étaient exprimés de façon similaire par les synoviocytes RA non stimulés et stimulés. Dans les synoviocytes seuls ASC et caspase-1 étaient détéctable au niveau protéique. NALP-1, -3 et -12 n'était pas détéctables. Cependant après stimulation il n'y avait d'IL-Ιβ sécrété que ce soit dans les surnageants de cultures de synoviocytes RA ou OA.
Resumo:
The anaplastic lymphoma kinase (ALK) gene is overexpressed, mutated or amplified in most neuroblastoma (NB), a pediatric neural crest-derived embryonal tumor. The two most frequent mutations, ALK-F1174L and ALK-R1275Q, contribute to NB tumorigenesis in mouse models, and cooperate with MYCN in the oncogenic process. However, the precise role of activating ALK mutations or ALK-wt overexpression in NB tumor initiation needs further clarification. Human ALK-wt, ALK-F1174L, or ALK-R1275Q were stably expressed in murine neural crest progenitor cells (NCPC), MONC-1 or JoMa1, immortalized with v-Myc or Tamoxifen-inducible Myc-ERT, respectively. While orthotopic implantations of MONC- 1 parental cells in nude mice generated various tumor types, such as NB, osteo/ chondrosarcoma, and undifferentiated tumors, due to v-Myc oncogenic activity, MONC-1-ALK-F1174L cells only produced undifferentiated tumors. Furthermore, our data represent the first demonstration of ALK-wt transforming capacity, as ALK-wt expression in JoMa1 cells, likewise ALK-F1174L, or ALK-R1275Q, in absence of exogenous Myc-ERT activity, was sufficient to induce the formation of aggressive and undifferentiated neural crest cell-derived tumors, but not to drive NB development. Interestingly, JoMa1-ALK tumors and their derived cell lines upregulated Myc endogenous expression, resulting from ALK activation, and both ALK and Myc activities were necessary to confer tumorigenic properties on tumor-derived JoMa1 cells in vitro.
Resumo:
Alpha1-adrenoceptors were identified in murine tissues by [3H]prazosin saturation binding studies, with a rank order of cerebral cortex > cerebellum > liver > lung > kidney > heart > spleen, with the spleen not exhibiting detectable expression. Competition binding studies were performed with 5-methylurapidil, BMY 7378, methoxamine, (+)-niguldipine, noradrenaline, SB 216469 and tamsulosin. On the basis of monophasic low-affinity competition by BMY 7378, alpha1D-adrenoceptors were not detected at the protein level in any tissue. On the basis of competition studies with the alpha1A/alpha1B-discriminating drugs, alpha1B-adrenoceptors appeared to be the predominant or even the sole subtype in murine liver, lung and cerebellum, whereas murine cerebral cortex and kidney contained approximately 30% and 50% of alpha1A-adrenoceptors, respectively. The affinities of the various competitors in the murine tissues were quite similar to those reported from other species. The ratio of high- and low-affinity sites for tamsulosin did not in all cases match the percentages of alpha1A- and alpha1B-adrenoceptors detected by the other competitors; however, the low-affinity component of the tamsulosin competition curves was abolished in the cerebral cortex of alpha1B-adrenoceptor knockout mice. Treatment with chloroethylclonidine (10 microM, 30 min, 37 degrees C) inactivated the alpha1-adrenoceptors in all tissues by >75%. When the concentration-dependent inactivation of tissue alpha1B-adrenoceptors (liver) and tissue alpha1A-adrenoceptors (cerebral cortex from alpha1B-adrenoceptor knockout mice) was compared, alpha1A-adrenoceptors were only slightly less sensitive toward chloroethylclonidine than alpha1B-adrenoceptors. We conclude that murine tissues express alpha1A- and alpha1B-adrenoceptors, which are largely similar to those in other species. However, the tissue-specific distribution of subtypes may differ from that of other species.
Resumo:
Peritoneal dialysis is an extrarenal epuration modality which uses physiological properties of peritoneum as a dialysis membrane. Despite the improvement of peritoneal dialysis techniques in the last ten years, peritonitis remains one of the most redoubt complications. Peritonitis may sometimes lead to technical failures, which need catheter removing, but rarely lead to death. Our retrospective study at the dialysis center of CHUV has analyzed factors which can predict this kind of complication. It calculates peritonitis rate and median peritonitis free-survival for different groups of patients. It also describes causatives organisms and their sensitivity to antibiotics.
Resumo:
This study was designed to evaluate the potential of gas-filled microbubbles (MB) to be internalized by antigen-presenting cells (APC). Fluorescently labeled MB were prepared, thus permitting to track binding to, and internalization in, APC. Both human and mouse cells, including monocytes and dendritic cells (DC), prove capable to phagocyte MB in vitro. Observation by confocal laser scanning microscopy showed that interaction between MB and target cells resulted in a rapid internalization in cellular compartments and to a lesser extent in the cytoplasm. Capture of MB by APC resulted in phagolysosomal targeting as verified by double staining with anti-lysosome-associated membrane protein-1 monoclonal antibody and decrease of internalization by phagocytosis inhibitors. Fluorescent MB injected subcutaneously (s.c.) in mice were found to be associated with CD11c(+)DC in lymph nodes draining the injection sites 24 h after administration. Altogether, our study demonstrates that MB can successfully target APC both in vitro and in vivo, and thus may serve as a potent Ag delivery system without requirement for ultrasound-based sonoporation. This adds to the potential of applications of MB already extensively used for diagnostic imaging in humans.
Resumo:
Antigen presentation is a required prime event before T-cell activation can occur. Cells which constitutively express major histocompatibility antigen class I or II are responsible for presenting antigens. These are essentially alveolar macrophages (AM) residing mostly in the air spaces, and dendritic cells (DC), which create a tight surveillance network just below the epithelial cells of the airways and in the loose connective tissue around the vessels or in the pleura. AM are poor antigen presenting cells compared to DC. AM when encountering foreign particles or organisms may, however, influence the degree of activity or maturation of neighbouring DC, by releasing cytokines. Thus, we will describe how the innate immune processes may influence specific immunity and perhaps Th1 and Th2 differentiation. Following the description of the differences in phenotype and functions of AM and DC, we will provide data showing that in some pathological conditions, such as sarcoidosis, AM can acquire some specificities of DC.
Resumo:
Background: Inflammasome activation with the production of IL-1 beta received substantial attention recently in inflammatory diseases. However, the role of inflammasome in the pathogenesis of asthma is not clear. Using an adjuvant-free model of allergic lung inflammation induced by ovalbumin (OVA), we investigated the role of NLRP3 inflammasome and related it to IL-1R1 signaling pathway.Methods: Allergic lung inflammation induced by OVA was evaluated in vivo in mice deficient in NLRP3 inflammasome, IL-1R1, IL-1 beta or IL-1 alpha. Eosinophil recruitment, Th2 cytokine, and chemokine levels were determined in bronchoalveolar lavage fluid, lung homogenates, and mediastinal lymph node cells ex vivo.Results: Allergic airway inflammation depends on NLRP3 inflammasome activation. Dendritic cell recruitment into lymph nodes, Th2 lymphocyte activation in the lung and secretion of Th2 cytokines and chemokines are reduced in the absence of NLRP3. Absence of NLRP3 and IL-1 beta is associated with reduced expression of other proinflammatory cytokines such as IL-5, IL-13, IL-33, and thymic stromal lymphopoietin. Furthermore, the critical role of IL-1R1 signaling in allergic inflammation is confirmed in IL-1R1-, IL-1 beta-, and IL-1 alpha-deficient mice.Conclusion: NLRP3 inflammasome activation leading to IL-1 production is critical for the induction of a Th2 inflammatory allergic response.
Resumo:
BACKGROUND/AIMS: Neonatal thymectomy induces autoimmune gastritis in BALB/c (minor lymphocyte-stimulating antigen [Mls]-1b) mice, whereas DBA/2 (Mls-1a) mice are resistant. Resistance has been linked to the Mls-1a locus, which encodes a retroviral superantigen, and to superantigen reactive T cells that express V beta 6+ T-cell receptors. V beta 6+ T cells are known to be deleted in mice expressing Mls-1a superantigens. METHODS: Neonatal thymectomized BALB/c and Mls-1a congenic BALB.D2.Mls-1a mice were analyzed to examine directly the role of Mls-1a self-superantigens and V beta 6+ T cells in autoimmune gastritis. RESULTS: Autoimmune gastritis was detected in thymectomized BALB.D2.Mls-1a mice with high incidence. Autoantibodies to the gastric H+,K(+)-adenosine triphosphatase were present independent of the Mls phenotype in sera of gastritic mice. Severe gastritis had already appeared 1 month after thymectomy in BALB.D2.Mls-1a mice. V beta 6+ T cells were deleted in the stomach lymph nodes of 1-month-old gastritic BALB.D2.Mls-1a mice but could be detected by immunocytochemistry in the stomach lesions. CONCLUSIONS: Endogenous Mls-1a self-superantigens and Mls-1a reactive V beta 6+ T cells are not involved in resistance to autoimmune gastritis in BALB.D2 mice.
The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response.
Resumo:
The innate immune system recognizes nucleic acids during infection and tissue damage. Whereas viral RNA is detected by endosomal toll-like receptors (TLR3, TLR7, TLR8) and cytoplasmic RIG-I and MDA5, endosomal TLR9 and cytoplasmic DAI bind DNA, resulting in the activation of nuclear factor-kappaB and interferon regulatory factor transcription factors. However, viruses also trigger pro-inflammatory responses, which remain poorly defined. Here we show that internalized adenoviral DNA induces maturation of pro-interleukin-1beta in macrophages, which is dependent on NALP3 and ASC, components of the innate cytosolic molecular complex termed the inflammasome. Correspondingly, NALP3- and ASC-deficient mice display reduced innate inflammatory responses to adenovirus particles. Inflammasome activation also occurs as a result of transfected cytosolic bacterial, viral and mammalian (host) DNA, but in this case sensing is dependent on ASC but not NALP3. The DNA-sensing pro-inflammatory pathway functions independently of TLRs and interferon regulatory factors. Thus, in addition to viral and bacterial components or danger signals in general, inflammasomes sense potentially dangerous cytoplasmic DNA, strengthening their central role in innate immunity.
Resumo:
Cervical cancer results from infection with high-risk type human papillomaviruses (HPV). Therapeutic vaccines aiming at controlling existing genital HPV infections and associated lesions are usually tested in mice with HPV-expressing tumor cells subcutaneously implanted into their flank. However, effective vaccine-induced regression of these ectopic tumors strongly contrasts with the poor clinical results of these vaccines produced in patients with HPV-associated genital neoplasia. To assess HPV therapeutic vaccines in a more relevant setting, we have, here, established an orthotopic mouse model where tumors in the genital mucosa (GM) develop after an intravaginal instillation of HPV16 E6/E7-expressing tumor cells transduced with a luciferase-encoding lentiviral vector for in vivo imaging of tumor growth. Tumor take was 80-90% after nonoxynol-9 induced damage of the epithelium. Tumors remained localized in the genital tract, and histological analysis showed that most tumors grew within the squamous epithelium of the vaginal wall. Those tumors induced (i) E7-specific CD8 T cells restricted to the GM and draining lymph nodes, in agreement with their mucosal location and (ii) high Foxp3+ CD4+ infiltrates, similarly to those found in natural non-regressing HPV lesions. This novel genital HPV-tumor model by requiring GM homing of vaccine-induced immune responses able to overcome local immuno-suppression may be more representative of the situation occurring in patients upon therapeutic vaccination.
Resumo:
Azoles are widely used in antifungal therapy in medicine. Resistance to azoles can occur in Candida albicans principally by overexpression of multidrug transporter gene CDR1, CDR2, or MDR1 or by overexpression of ERG11, which encodes the azole target. The expression of these genes is controlled by the transcription factors (TFs) TAC1 (involved in the control of CDR1 and CDR2), MRR1 (involved in the control of MDR1), and UPC2 (involved in the control of ERG11). Several gain-of-function (GOF) mutations are present in hyperactive alleles of these TFs, resulting in the overexpression of target genes. While these mutations are beneficial to C. albicans survival in the presence of the antifungal drugs, their effects could potentially alter the fitness and virulence of C. albicans in the absence of the selective drug pressure. In this work, the effect of GOF mutations on C. albicans virulence was addressed in a systemic model of intravenous infection by mouse survival and kidney fungal burden assays. We engineered a set of strains with identical genetic backgrounds in which hyperactive alleles were reintroduced in one or two copies at their genomic loci. The results obtained showed that neither TAC1 nor MRR1 GOF mutations had a significant effect on C. albicans virulence. In contrast, the presence of two hyperactive UPC2 alleles in C. albicans resulted in a significant decrease in virulence, correlating with diminished kidney colonization compared to that by the wild type. In agreement with the effect on virulence, the decreased fitness of an isolate with UPC2 hyperactive alleles was observed in competition experiments with the wild type in vivo but not in vitro. Interestingly, UPC2 hyperactivity delayed filamentation of C. albicans after phagocytosis by murine macrophages, which may at least partially explain the virulence defects. Combining the UPC2 GOF mutation with another hyperactive TF did not compensate for the negative effect of UPC2 on virulence. In conclusion, among the major TFs involved in azole resistance, only UPC2 had a negative impact on virulence and fitness, which may therefore have consequences for the epidemiology of antifungal resistance.
Resumo:
The peroxisome proliferator-activator receptor PPARgamma plays an essential role in vascular biology, modulating macrophage function and atherosclerosis progression. Recently, we have described the beneficial effect of combined activation of the ghrelin/GHS-R1a receptor and the scavenger receptor CD36 to induce macrophage cholesterol release through transcriptional activation of PPARgamma. Although the interplay between CD36 and PPARgamma in atherogenesis is well recognized, the contribution of the ghrelin receptor to regulate PPARgamma remains unknown. Here, we demonstrate that ghrelin triggers PPARgamma activation through a concerted signaling cascade involving Erk1/2 and Akt kinases, resulting in enhanced expression of downstream effectors LXRalpha and ABC sterol transporters in human macrophages. These effects were associated with enhanced PPARgamma phosphorylation independently of the inhibitory conserved serine-84. Src tyrosine kinase Fyn was identified as being recruited to GHS-R1a in response to ghrelin, but failure of activated Fyn to enhance PPARgamma Ser-84 specific phosphorylation relied on the concomitant recruitment of docking protein Dok-1, which prevented optimal activation of the Erk1/2 pathway. Also, substitution of Ser-84 preserved the ghrelin-induced PPARgamma activity and responsiveness to Src inhibition, supporting a mechanism independent of Ser-84 in PPARgamma response to ghrelin. Consistent with this, we found that ghrelin promoted the PI3-K/Akt pathway in a Galphaq-dependent manner, resulting in Akt recruitment to PPARgamma, enhanced PPARgamma phosphorylation and activation independently of Ser-84, and increased expression of LXRalpha and ABCA1/G1. Collectively, these results illustrate a complex interplay involving Fyn/Dok-1/Erk and Galphaq/PI3-K/Akt pathways to transduce in a concerted manner responsiveness of PPARgamma to ghrelin in macrophages.
Resumo:
Establishing CD8(+) T cell cultures has been empirical and the published methods have been largely individual laboratory based. In this study, we optimized culturing conditions and show that IL-2 concentration is the most critical factor for the success of establishing CD8(+) T cell cultures. High IL-2 concentration encouraged T cells to non-specifically proliferate, express a B cell marker, B220, and undergo apoptosis. These cells also lose typical irregular T cell morphology and are incapable of sustaining long-term cultures. Using tetramer and intracellular cytokine assessments, we further demonstrated that many antigen-specific T cells have been rendered nonfunctional when expanded under high IL-2 concentration. When IL-2 is used in the correct range, B220-mediated cell depletion greatly enhanced the success rate of such T cell cultures.
Resumo:
Histone deacetylases (HDACs) control gene expression by deacetylating histones and nonhistone proteins. HDAC inhibitors (HDACi) are powerful anticancer drugs that exert anti-inflammatory and immunomodulatory activities. We recently reported a proof-of-concept study demonstrating that HDACi increase susceptibility to bacterial infections in vivo. Yet, still little is known about the effects of HDACi on antimicrobial innate immune defenses. Here we show that HDACi belonging to different chemical classes inhibit at multiple levels the response of macrophages to bacterial infection. HDACi reduce the phagocytosis and the killing of Escherichia coli and Staphylococcus aureus by macrophages. In line with these findings, HDACi decrease the expression of phagocytic receptors and inhibit bacteria-induced production of reactive oxygen and nitrogen species by macrophages. Consistently, HDACi impair the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits and inducible nitric oxide synthase. These data indicate that HDACi have a strong impact on critical antimicrobial defense mechanisms in macrophages.