956 resultados para MULTILAYER THIN-FILMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interest in carbon nanomaterials with high transparency and electrical conductivity has grown within the last decade in view of a wide variety of applications, including biocompatible sensors, diagnostic devices and bioelectronic implants. The aim of this work is to test the biocompatibility of particular nanometer-thin nanocrystalline glass-like carbon films (NGLC), a disordered structure of graphene flakes joined by carbon matrix (Romero et al., 2016). We used a cell line (SN4741) from substantia nigra dopaminergic cells derived from transgenic mouse embryo cells (Son et al., 1999). Some cells were cultured on top of NGLC films (5, 20 and 80 nm) and other with NGLC nanoflakes (approx. 5-10 mm2) in increasing concentrations: 1, 5, 10, 20 and 50 μg/ml, during 24 h, 3 days and 7 days. Cells growing in normal conditions were defined under culture with DMEM supplemented with 10% FCS, Glucose (0,6%), penicillin-streptomycin (50U/ml) and L-glutamine (2mM) at 5%CO2 humidified atmosphere. Nanoflakes were resuspended in DMEM at the stock concentration (2 g/l). The experiments were conducted in 96 well plates (Corning) using 2500 cells per well. For MTT analysis, the manufacturer recommendations were followed (Roche, MTT kit assay): a positive control with a 10% Triton X-100 treatments (15 minutes) and a negative control without neither Triton X-100 nor NGLC. As apoptosis/necrosis assay we used LIVE/DEAD® Viability/Cytotoxicity Assay Kit (Invitrogen). In a separate experiment, cells were cultured on top of the NGLC films for 7 days. Primary antibodies: anti-synaptophysin (SYP, clone SY38, Chemicon) and goat anti-GIRK2 (G-protein-regulated inward-rectifier potassium channel 2 protein) (Abcom) following protocol for immunofluorescence. WB for proteins detection performed with a polyclonal anti-rabbit proliferating cell nuclear antigen (PCNA). Results demonstrated the biocompatibility with different concentration of NGLC varying the degree of survival from a low concentration (1 mg/ml) in the first 24 h to high concentrations (20-50 g/ml) after 7 days as it is corroborated by the PCNA analysis. Cells cultured on top of the film showed after 7 days axonal-like alignment and edge orientation as well as net-like images. Neuronal functionality was demonstrated to a certain extent through the analysis of coexistence between SYP and GIRK2. In conclusion, this nanomaterial could offer a powerful platform for biomedical applications such as neural tissue engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal oxide thin films are important for modern electronic devices ranging from thin film transistors to photovoltaics and functional optical coatings. Solution processed techniques allow for thin films to be rapidly deposited over a range of surfaces without the extensive processing of comparative vapour or physical deposition methods. The production of thin films of vanadium oxide prepared through dip-coating was developed enabling a greater understanding of the thin film formation. Mechanisms of depositing improved large area uniform coverage on a number of technologically relevant substrates were examined. The fundamental mechanism for polymer-assisted deposition in improving thin film surface smoothness and long range order has been delivered. Different methods were employed for adapting the alkoxide based dip-coating technique to produce a variety of amorphous and crystalline vanadium oxide based thin films. Using a wide range of material, spectroscopic and optical measurement techniques the morphology, structure and optoelectronic properties of the thin films were studied. The formation of pinholes on the surface of the thin films, due to dewetting and spinodal effects, was inhibited using the polymer assisted deposition technique. Uniform thin films with sub 50 nm thicknesses were deposited on a variety of substrates controlled through alterations to the solvent-alkoxide dilution ratios and employing polymer assisted deposition techniques. The effects of polymer assisted deposition altered the crystallized VO thin films from a granular surface structure to a polycrystalline structure composed of high density small in-plane grains. The formation of transparent VO based thin film through Si and Na substrate mediated diffusion highlighted new methods for material formation and doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transparent thin films can now be site-selectively patterned and positioned on surface using mask-defined electrodeposition of one oxide and overcoating with a different solution-processed oxide, followed by thermal annealing. Annealing allows an interdiffusion process to create a new oxide that is entirely transparent. A primary electrodeposited oxide can be patterned and the secondary oxide coated over the entire substrate to form high color contrast coplanar thin film tertiary oxide. The authors also detail the phase formation and chemical state of the oxide and how the nature of the electrodeposited layer and the overlayer influence the optical clearing of the patterned oxide film.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiferroic materials displaying coupled ferroelectric and ferromagnetic order parameters could provide a means for data storage whereby bits could be written electrically and read magnetically, or vice versa. Thin films of Aurivillius phase Bi6Ti2.8Fe1.52Mn0.68O18, previously prepared by a chemical solution deposition (CSD) technique, are multiferroics demonstrating magnetoelectric coupling at room temperature. Here, we demonstrate the growth of a similar composition, Bi6Ti2.99Fe1.46Mn0.55O18, via the liquid injection chemical vapor deposition technique. High-resolution magnetic measurements reveal a considerably higher in-plane ferromagnetic signature than CSD grown films (MS = 24.25 emu/g (215 emu/cm3), MR = 9.916 emu/g (81.5 emu/cm3), HC = 170 Oe). A statistical analysis of the results from a thorough microstructural examination of the samples, allows us to conclude that the ferromagnetic signature can be attributed to the Aurivillius phase, with a confidence level of 99.95%. In addition, we report the direct piezoresponse force microscopy visualization of ferroelectric switching while going through a full in-plane magnetic field cycle, where increased volumes (8.6 to 14% compared with 4 to 7% for the CSD-grown films) of the film engage in magnetoelectric coupling and demonstrate both irreversible and reversible magnetoelectric domain switching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se presentan las propiedades eléctricas del compuesto Cu3BiS3 depositado por co-evaporación. Este es un nuevo compuesto que puede tener propiedades adecuadas para ser utilizado como capa absorbente en celdas solares. Las muestras fueron caracterizadas a través de medidas de efecto Hall y fotovoltaje superficial transiente (SPV). A través de medidas de efecto Hall se encontró que la concentración de portadores de carga n es del orden de 1016 cm-3 independiente de la relación de masas de Cu/Bi. También se encontró que la movilidad de este compuesto (μ del orden de 4 cm2V -1s-1) varía de acuerdo con los mecanismos de transporte que la gobiernan en dependencia con la temperatura. A partir de las medidas de SPV se encontró alta densidad de defectos superficiales, defectos que son pasivados al superponer una capa buffer sobre el compuesto Cu3BiS3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of atmospheric pressure plasmas for thin film deposition on thermo-sensitive materials is currently one of the main challenges of the plasma scientific community. Despite the growing interest in this field, the existing knowledge gap between gas-phase reaction mechanisms and thin film properties is still one of the most important barriers to overcome for a complete understanding of the process. In this work, thin films surface characterization techniques, combined with passive and active gas-phase diagnostic methods, were used to provide a comprehensive study of the Ar/TEOS deposition process assisted by an atmospheric pressure plasma jet. SiO2-based thin films exhibiting a well-defined chemistry, a good morphological structure and high uniformity were studied in detail by FTIR, XPS, AFM and SEM analysis. Furthermore, non-intrusive spectroscopy techniques (OES, filter imaging) and laser spectroscopic methods (Rayleigh scattering, LIF and TALIF) were employed to shed light on the complexity of gas-phase mechanisms involved in the deposition process and discuss the influence of TEOS admixture on gas temperature, electron density and spatial-temporal behaviours of active species. The poly-diagnostic approach proposed in this work opens interesting perspectives both in terms of process control and optimization of thin film performances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present Thesis reports on the various research projects to which I have contributed during my PhD period, working with several research groups, and whose results have been communicated in a number of scientific publications. The main focus of my research activity was to learn, test, exploit and extend the recently developed vdW-DFT (van der Waals corrected Density Functional Theory) methods for computing the structural, vibrational and electronic properties of ordered molecular crystals from first principles. A secondary, and more recent, research activity has been the analysis with microelectrostatic methods of Molecular Dynamics (MD) simulations of disordered molecular systems. While only very unreliable methods based on empirical models were practically usable until a few years ago, accurate calculations of the crystal energy are now possible, thanks to very fast modern computers and to the excellent performance of the best vdW-DFT methods. Accurate energies are particularly important for describing organic molecular solids, since they often exhibit several alternative crystal structures (polymorphs), with very different packing arrangements but very small energy differences. Standard DFT methods do not describe the long-range electron correlations which give rise to the vdW interactions. Although weak, these interactions are extremely sensitive to the packing arrangement, and neglecting them used to be a problem. The calculations of reliable crystal structures and vibrational frequencies has been made possible only recently, thanks to development of some good representations of the vdW contribution to the energy (known as “vdW corrections”).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical hydrogen loading is a technique used to produce and study the hydrogenation in metals starting from a liquid solution containing water. It is a possible alternative to another, well-established technique which loads hydrogen starting from its gas phase. In this work, the electrochemical method is used to understand the fundamental thermodynamics of hydrogen loading in constraint systems such as thin films on substrates, and possibly distinguish the role of interfaces, stresses and microstructure during the hydrogenation process. The systems under study are thin films of Pd, Mg/Pd, and Ti/Mg multilayers. Possible future technological applications may be in the field of hydrogen storage and hydrogen sensors. Towards the end, the experimental setup is modified by introducing an automatic relay. This change leads to improvements in the data analysis and in the attainable information on the kinetics of the systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The layer-by-layer technique has been used as a powerful method to produce multilayer thin films with tunable properties. When natural polymers are employed, complicated phenomena such as self-aggregation and fibrilogenesis can occur, making it more difficult to obtain and characterize high-quality films. The weak acid and base character of such materials provides multilayer systems that may differ from those found with synthetic polymers due to strong self-organization effects. Specifically, LbL films prepared with chitosan and silk fibroin (SF) often involve the deposition of fibroin fibrils, which can influence the assembly process, surface properties, and overall film functionality. In this case, one has the intriguing possibility of realizing multilayer thin films with aligned nanofibers. In this article, we propose a strategy to control fibroin fibril formation by adjusting the assembly partner. Aligned fibroin fibrils were formed when chitosan was used as the counterpart, whereas no fibrils were observed when poly(allylamine hydrochloride) (PAH) was used. Charge density, which is higher in PAH, apparently stabilizes SF aggregates on the nanometer scale, thereby preventing their organization into fibrils. The drying step between the deposition of each layer was also crucial for film formation, as it stabilizes the SF molecules. Preliminary cell studies with optimized multilayers indicated that cell viability of NIH-3T3 fibroblasts remained between 90 and 100% after surface seeding, showing the potential application of the films in the biomedical field, as coatings and functional surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis deals with the development of new branched polymer architectures containing hyperbranched polyglycerol. Materials investigated include hyperbranched oligomers, hyperbranched polyglycerols containing functional initiator-cores at the focal point, well-defined linear-hyperbranched block copolymers and also negatively charged hyperbranched polyelectrolytes.rnHyperbranched oligoglycerols (DPn = 7 and 14) have been synthesized for the first time. The materials show narrow polydispersity (Mw/Mn ca. 1.45) and a very low content in cyclic homopolymers. 13C NMR evidences the dendritic structure of the oligomers and the DB could be calculated (44% and 52%). These new oligoglycerols were compared with the industrial products obtained by polycondensation which exhibit narrow polydispersity (Mw/Mn<1.3) butrnmultimodal distribution in SEC. Detailed 13C NMR and Maldi-ToF studies reveal the presence of branched units and cyclic compounds. In comparison, the hyperbranched oligoglycerols comprise a very low proportion of cyclic homopolymer which render them very interesting materials for biomedical applications for example.rnThe site isolation of the core moiety in dendritic structure offers intriguing potential with respect to peculiar electro-optical properties. Various initiator-cores (n-alkyl amines, UVabsorbing amines and benzophenone) for the ROMBP of glycidol have been tested. The bisglycidolized amine initiator-cores show the best control over the molecular weight and the molecular weight distribution. The photochemical analyses of the naphthalene containingrnhyperbranched polyglycerols show a slight red shift, a pronounced hypochromic effect (decrease of the intensity of the band) compared with the parent model compound and the formation of a relative compact structure. The benzophenone containing polymers adopt an open structure in polar solvents. The fluorescence measurements show a clear “dendritic effect” on the fluorescence intensities and the quantum yield of the encapsulated benzophenone.rnA convenient 3-step strategy has been developed for the preparation of well-defined amphiphilic, linear-hyperbranched block copolymers via hypergrafting. The procedure represents a combination of carbanionic polymerization with the alkoxide-based, controlled ring-opening multibranching polymerization of glycidol. Materials consisting of a polystyrene linear block and a hyperbranched polyglycerol block exhibit narrow polydispersity (1.01-1.02rnfor 5.4% to 27% wt. PG and 1.74 for 52% wt. PG) with a high grafting efficiency. The strategy was also extended to materials with a linear polyisoprene block.rnDetailed investigations of the solution properties of the block copolymers with linear polystyrene blocks show that block copolymer micelles are stabilized by the highly branched block. The morphology of the aggregates is depending on the solvent: in chloroform monodisperse spherical shape aggregates and in toluene ellipsoidal aggregates are formed. On graphite these aggregates show interesting features, giving promising potential applications with respect to the presence of a very dense, functional and stable hyperbranched block.rnThe bulk morphology of the linear-hyperbranched block copolymers has been investigated. The materials with a linear polyisoprene block only behave like complex liquids due to the low Tg and the disordered nature of both components. For the materials with polystyrene, only the sample with 27% wt. hyperbranched polyglycerol forms some domains showing lamellae.rnThe preparation of hyperbranched polyelectrolytes was achieved by post-modification of the hydroxyl groups via Michael addition of acrylonitrile, followed by hydrolysis. In aqueous solution materials form large aggregates with size depending on the pH value. After deposition on mica the structures observed by AFM show the coexistence of aggregates andrnunimers. For the low molecular weight sample (PG 520 g·mol-1) extended and highly ordered terrace structures were observed. Materials were also successfully employed for the fabrication of composite organic-inorganic multilayer thin films, using electrostatic layer-bylayer self-assembly coupled with chemical vapor deposition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films consisting of 3 or 4 Sb and Ge alternating layers are irradiated with single nanosecond laser pulses (12 ns, 193 nm). Real time reflectivity (RTR) measurements are performed during irradiation, and Rutherford backscattering spectrometry (RBS) is used to obtain the concentration depth profiles before and after irradiation. Interdiffusion of the elements takes place at the layer interfaces within the liquid phase. The reflectivity transients allow to determine the laser energy thresholds both to induce and to saturate the process being both thresholds dependent on the multilayer configuration. It is found that the energy threshold to initiate the process is lower when Sb is at the surface while the saturation is reached at lower energy densities in those configurations with thinner layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%. In addition, this system achieved high electrochromic efficiency (over 70 cm(2) C-1 at 630 nm) and a response time that could be measured in milliseconds. The electrode was cycled more than 10(3) times, indicating excellent stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the assembly of layer-by-layer films based on the poly(propylene imine) dendrimer (PPID) generation 3 and nickel tetrasulfonated phthalocyanine (NiTsPc) for application as chemically sensitive membranes in sepal alive extended-gate field effect transistor (SEGFET) pH sensors PPID/NiTsPc films wet e adsorbed on quartz, glass. indium tin oxide. or gold (Au)-covered glass substrates Multilayer formation was monitored via UV-vis absorption upon following the increment in the Q-band intensity (615 nm) of NiTsPc The nanostructured membranes were very stable in a pH range of 4-10 and displayed a good sensitivity toward H(+), ca 30 mV/pH for PPID/N(1)TsPc films deposited on Au-covered substrates For films deposited on ITO, the sensitivity was ca 52 4 mV/pH. close to the expected theoretical value for ton-sensitive membranes. The use of chemically stable PPID/NiTsPc films as gate membranes in SEGFETs, as introduced here, may represent an alternative for the fabrication of nanostructured, porous platforms for enzyme immobilization to be used in enzymatic biosensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium oxide (TiO(2)) has been extensively applied in the medical area due to its proved biocompatibility with human cells [1]. This work presents the characterization of titanium oxide thin films as a potential dielectric to be applied in ion sensitive field-effect transistors. The films were obtained by rapid thermal oxidation and annealing (at 300, 600, 960 and 1200 degrees C) of thin titanium films of different thicknesses (5 nm, 10 nm and 20 nm) deposited by e-beam evaporation on silicon wafers. These films were analyzed as-deposited and after annealing in forming gas for 25 min by Ellipsometry, Fourier Transform Infrared Spectroscopy (FTIR), Raman Spectroscopy (RAMAN), Atomic Force Microscopy (AFM), Rutherford Backscattering Spectroscopy (RBS) and Ti-K edge X-ray Absorption Near Edge Structure (XANES). Thin film thickness, roughness, surface grain sizes, refractive indexes and oxygen concentration depend on the oxidation and annealing temperature. Structural characterization showed mainly presence of the crystalline rutile phase, however, other oxides such Ti(2)O(3), an interfacial SiO(2) layer between the dielectric and the substrate and the anatase crystalline phase of TiO(2) films were also identified. Electrical characteristics were obtained by means of I-V and C-V measured curves of Al/Si/TiO(x)/Al capacitors. These curves showed that the films had high dielectric constants between 12 and 33, interface charge density of about 10(10)/cm(2) and leakage current density between 1 and 10(-4) A/cm(2). Field-effect transistors were fabricated in order to analyze I(D) x V(DS) and log I(D) x Bias curves. Early voltage value of -1629 V, R(OUT) value of 215 M Omega and slope of 100 mV/dec were determined for the 20 nm TiO(x) film thermally treated at 960 degrees C. (C) 2009 Elsevier B.V. All rights reserved.