935 resultados para MASS CLASSIFICATION SYSTEMS
Resumo:
Magnification can be provided to assist those with visual impairment to make the best use of remaining vision. Electronic transverse magnification of an object was first conceived for use in low vision in the late 1950s, but has developed slowly and is not extensively prescribed because of its relatively high cost and lack of portability. Electronic devices providing transverse magnification have been termed closed-circuit televisions (CCTVs) because of the direct cable link between the camera imaging system and monitor viewing system, but this description generally refers to surveillance devices and does not indicate the provision of features such as magnification and contrast enhancement. Therefore, the term Electronic Vision Enhancement Systems (EVES) is proposed to better distinguish and describe such devices. This paper reviews current knowledge on EVES for the visually impaired in terms of: classification; hardware and software (development of technology, magnification and field-of-view, contrast and image enhancement); user aspects (users and usage, reading speed and duration, and training); and potential future development of EVES. © 2003 The College of Optometrists.
Resumo:
MOTIVATION: There is much interest in reducing the complexity inherent in the representation of the 20 standard amino acids within bioinformatics algorithms by developing a so-called reduced alphabet. Although there is no universally applicable residue grouping, there are numerous physiochemical criteria upon which one can base groupings. Local descriptors are a form of alignment-free analysis, the efficiency of which is dependent upon the correct selection of amino acid groupings. RESULTS: Within the context of G-protein coupled receptor (GPCR) classification, an optimization algorithm was developed, which was able to identify the most efficient grouping when used to generate local descriptors. The algorithm was inspired by the relatively new computational intelligence paradigm of artificial immune systems. A number of amino acid groupings produced by this algorithm were evaluated with respect to their ability to generate local descriptors capable of providing an accurate classification algorithm for GPCRs.
Resumo:
The paper suggests a classification of dynamic rule-based systems. For each class of systems, limit behavior is studied. Systems with stabilizing limit states or stabilizing limit trajectories are identified, and such states and trajectories are found. The structure of the set of limit states and trajectories is investigated.
Resumo:
Electrocardiography (ECG) has been recently proposed as biometric trait for identification purposes. Intra-individual variations of ECG might affect identification performance. These variations are mainly due to Heart Rate Variability (HRV). In particular, HRV causes changes in the QT intervals along the ECG waveforms. This work is aimed at analysing the influence of seven QT interval correction methods (based on population models) on the performance of ECG-fiducial-based identification systems. In addition, we have also considered the influence of training set size, classifier, classifier ensemble as well as the number of consecutive heartbeats in a majority voting scheme. The ECG signals used in this study were collected from thirty-nine subjects within the Physionet open access database. Public domain software was used for fiducial points detection. Results suggested that QT correction is indeed required to improve the performance. However, there is no clear choice among the seven explored approaches for QT correction (identification rate between 0.97 and 0.99). MultiLayer Perceptron and Support Vector Machine seemed to have better generalization capabilities, in terms of classification performance, with respect to Decision Tree-based classifiers. No such strong influence of the training-set size and the number of consecutive heartbeats has been observed on the majority voting scheme.
Resumo:
The problems of constructing the selfsrtucturized systems of memory of intelligence information processing tools, allowing formation of associative links in the memory, hierarchical organization and classification, generating concepts in the process of the information input, are discussed. The principles and methods for realization of selfstructurized systems on basis of hierarchic network structures of some special class – growing pyramidal network are studied. The algorithms for building, learning and recognition on basis of such type network structures are proposed. The examples of practical application are demonstrated.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
This paper presents an approach to development of intelligent search system and automatic document classification and cataloging tools for CASE-system based on metadata. The described method uses advantages of ontology approach and traditional approach based on keywords. The method has powerful intelligent means and it can be integrated with existing document search systems.
Resumo:
Transition P Systems are a parallel and distributed computational model based on the notion of the cellular membrane structure. Each membrane determines a region that encloses a multiset of objects and evolution rules. Transition P Systems evolve through transitions between two consecutive configurations that are determined by the membrane structure and multisets present inside membranes. Moreover, transitions between two consecutive configurations are provided by an exhaustive non-deterministic and parallel application of active evolution rules subset inside each membrane of the P system. But, to establish the active evolution rules subset, it is required the previous calculation of useful and applicable rules. Hence, computation of applicable evolution rules subset is critical for the whole evolution process efficiency, because it is performed in parallel inside each membrane in every evolution step. The work presented here shows advantages of incorporating decision trees in the evolution rules applicability algorithm. In order to it, necessary formalizations will be presented to consider this as a classification problem, the method to obtain the necessary decision tree automatically generated and the new algorithm for applicability based on it.
Resumo:
Systemized analysis of trends towards integration and hybridization in contemporary expert systems is conducted, and a particular class of applied expert systems, integrated expert systems, is considered. For this purpose, terminology, classification, and models, proposed by the author, are employed. As examples of integrated expert systems, Russian systems designed in this field and available to the majority of specialists are analyzed.
Resumo:
The requirements for the memory structuring of intelligent systems are discussed. Simultaneously with the introduction of information into memory there should take place the processes of association links (bonds) formation, hierarchy systematizing, classification and concept formation. The growing pyramidal networks (GPN) meet these requirements. Many years of experience of GPN application for data analyses in chemistry and material studies proves their sufficiently high potential.
Resumo:
A new original method and CASE-tool of system analysis and modelling are represented. They are for the first time consistent with the requirements of object-oriented technology of informational systems design. They essentially facilitate the construction of organisational systems models and increase the quality of the organisational designing and basic technological processes of object application developing.
Resumo:
The paper describes a classification-based learning-oriented interactive method for solving linear multicriteria optimization problems. The method allows the decision makers describe their preferences with greater flexibility, accuracy and reliability. The method is realized in an experimental software system supporting the solution of multicriteria optimization problems.
Resumo:
Георги Венков, Христо Генев - Разглеждаме един клас от L^2 - критични нелинейни уравнения на Шрьодингер в R^(1+n) с конволюционна нелинейност от тип Хартри. Целта ни е да установим локалното и глобално съществуване на решенията, както и коректност на задачата на Коши в достатъчно малка околност на нулата в пространството L^2 (R^n). Като естествено следствие на глобалните резултати ние доказваме съществуване на оператор на разсейване за малки начални условия.
Resumo:
Никола Вълчанов, Тодорка Терзиева, Владимир Шкуртов, Антон Илиев - Една от основните области на приложения на компютърната информатика е автоматизирането на математическите изчисления. Информационните системи покриват различни области като счетоводство, електронно обучение/тестване, симулационни среди и т. н. Те работят с изчислителни библиотеки, които са специфични за обхвата на системата. Въпреки, че такива системи са перфектни и работят безпогрешно, ако не се поддържат остаряват. В тази работа описваме механизъм, който използва динамично библиотеките за изчисления и взема решение по време на изпълнение (интелигентно или интерактивно) за това как и кога те да се използват. Целта на тази статия е представяне на архитектура за системи, управлявани от изчисления. Тя се фокусира върху ползите от използването на правилните шаблони за дизайн с цел да се осигури разширяемост и намаляване на сложността.
Resumo:
Clinical decision support systems (CDSSs) often base their knowledge and advice on human expertise. Knowledge representation needs to be in a format that can be easily understood by human users as well as supporting ongoing knowledge engineering, including evolution and consistency of knowledge. This paper reports on the development of an ontology specification for managing knowledge engineering in a CDSS for assessing and managing risks associated with mental-health problems. The Galatean Risk and Safety Tool, GRiST, represents mental-health expertise in the form of a psychological model of classification. The hierarchical structure was directly represented in the machine using an XML document. Functionality of the model and knowledge management were controlled using attributes in the XML nodes, with an accompanying paper manual for specifying how end-user tools should behave when interfacing with the XML. This paper explains the advantages of using the web-ontology language, OWL, as the specification, details some of the issues and problems encountered in translating the psychological model to OWL, and shows how OWL benefits knowledge engineering. The conclusions are that OWL can have an important role in managing complex knowledge domains for systems based on human expertise without impeding the end-users' understanding of the knowledge base. The generic classification model underpinning GRiST makes it applicable to many decision domains and the accompanying OWL specification facilitates its implementation.