972 resultados para LC-PDA
Resumo:
Electrospray ionization multi-stage tandem mass spectrometry (ESI-MSn) and liquid chromatography coupled with on-line mass spectrometry (LC/MS/MS) were applied to characterize saponins in crude extracts from Panax ginseng. The MSn data of the [M - H](-) ions of saponins can provide structural information on the sugar sequences of the saccharide chains and on the sapogins of saponins. By ESI-MSn, non-isomeric saponins and isomeric saponins with different aglycones can be determined rapidly in plant extracts. LC/MS/MS is a good complementary analytical tool for determination of isomeric saponins. These approaches constitute powerful analytical tools far rapid screening and structural assignment of saponins in plant extracts. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The phase transition and transition kinetics of a liquid crystalline copoly(amide-imide) (PAI37), which was synthesized from 70 mol% pyromellitic dianhydride, 30 mol% terephthaloyl chloride, and 1,3-bis[4-(4'-aminophenoxy)cumyl]benzene, was characterized by differential scanning calorimetry, polarized light microscopy, X-ray diffraction, and rheology. PAI37 exhibits a glass transition temperature at 182 degreesC followed by multiple phase transitions. The crystalline phase starts to melt at similar to 220 degreesC and forms smectic C (S-C) phase. The Sc phase transforms into smectic A (S-A) phase when the temperature is above 237 degreesC. The S-C to S-A transition spans a broad temperature range in which the S-A phase vanishes and forms isotropic melt. The WARD fiber pattern of PAI37 pulled from the anisotropic melt revealed an anomalous chain orientation, which was characterized by its layer normal perpendicular to the fiber direction. The transition kinetics for the mesophase and crystalline phase formation was also studied.
Resumo:
The structural and morphological evolution of mono-domains in thin films has been investigated for a series of liquid crystalline (LC) copolyethers. The copolyethers studied were synthesized by the reaction of 1-(4-hydroxy-4 ' -biphenylyl)-2-(4-hydroxyl-phenyl)propane (TPP) with 1,7-dibromoheptane and 1,11-undecane at different compositions (coTPPs-7/11). In contrast to the solution-cast thin films without annealing, which exhibit the isotropic homogeneous molecular orientation, mono-domains with a homeotropic alignment were found in coTPP-7/11(5/5) after the thin films were annealed in the high-temperature columnar phase (Phi '). Similar to the nucleation process in polymer crystallization, transmission electron microscopic observations show that small mono-domains appear in the initial stage of annealing, where molecules form a uniaxial in-plane chain orientation. With increasing annealing time, the molecular orientation gradually became tilted with respect to the substrate surface, and finally, a uniaxial homeotropic molecular orientation was achieved after a prolonged annealing time. The lateral size of mono-domains was found to increase continuously with annealing time and grew into a circular shape, indicating an isotropic lateral growth scheme which implies a hexagonal molecular packing proved by the electron diffraction experiments.
Resumo:
Self-assembled monolayer of natural single-stranded DNA (ssDNA) from dl:natured plasmid DNA and pBR322/PstI marker was first observed on Au(111) by low-current STM (Lc-STM). The width of ssDNA stripe measured is 0.9 +/- 0.1 nm, which is just half of the theoretical width of double-stranded DNA (dsDNA). Each ssDNA stripe consists of bright and dark parts. alternatively; the period of two adjacent bright parts in the same ssDNA stripe measured is 0.4 +/- 0.1 nm, which is consistent with the theoretical distance between two adjacent base pairs in ssDNA. The stripe orientations in ssDNA domains are predominately at angles of 0 degrees, 60 degrees or 120 degrees relative to crystallographically faceted steps on the gold surface. The electrochemical experiment indicated that it was ssDNA but not dsDNA that was absorbed on Au(111)surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Rabies virus was used as the antigen to immunize laying chickens. Anti-rabies virus immunoglobulin Y(IgY) was isolated from yolks of the eggs laid by these chickens using a two-step salt precipitation and one-step gel filtration protocol. The purified IgY was reduced with dithiothreitol, and heavy chains (HC) and light chains (LC) were obtained. In addition, the purified IgY was digested with pepsin and the fragment with specific antigen binding properties (Fab) was produced. Using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOFMS), the average molecular weights of IgY, HC, LC, and Fab were determined as 167 250, 65 105, 18 660, and 45,359 Da, respectively. IgY has two structural differences compared with mammalian IgGs. First, the molecular weight of the heavy chain of IgY is larger than that of its mammalian counterpart, while the molecular weight of the light chain of IgY is smaller. Second, upon pepsin digestion, anti-rabies virus IgY is degraded into Feb, in contrast to mammalian IgG, which has been reported to be degraded into F(ab')(2) under the same conditions. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A liquid crystalline (LC) copolyether has been synthesized from 1-(4-hydroxy-4'-biphenyl)-2-(4-hydroxyphenyl)propane with 1,7-dibromoheptane and 1,11-dibromoundecane with a 50/50 (both in %) equal composition of the 7- and 11-methylene monomers [coTPP-7/11(5/5)]. A mono-domain with a homeotropic alignment can be induced by a thin film surface in the LC phase. When an electrostatic field is applied to the surface-induced mono-domains parallel to the thin film surface normal, the molecular alignment undergoes a change from the homeotropic to uniaxial homogeneous arrangement. However, when the field is applied to a direction perpendicular to the thin film surface normal. the molecular alignment is about 10 degrees -tilt with respect to the homeotropic alignment toward the a*-axis. This is because the permanent dipole moment of the copolyether is not right vertical to the molecular direction. The calculation of molecular dipoles indicates that the permanent dipole moment of this copolyether is about 70 degrees away from the molecular axis, which leads to a negative dielectric anisotropy. It is speculated that the 10 degrees- rather than 20 degrees -tilt is due to a balance between the alignment induced by the electrostatic field and the surface. In the electrostatic field, molecules are subjected to a torque tau, which is determined by the permanent dipole moment P and the electrostatic field E: tau = P x E. The molecular realignment in both parallel and perpendicular directions to the thin film surface normal is determined by satisfying the condition of tau = P x E = 0. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
In natural and synthetic materials having non-racemic chiral centers, chirality and structural ordering each play a distinct role in the formation of ordered states. Configurational chirality can be extended to morphological chirality when the phase, structures possess low liquid crystalline order. In the crystalline states the crystallization process suppresses the chiral helical morphology due to strong ordering interactions, In this Letter, we report the first observation of helical single lamellar crystals of synthetic non-racemic chiral polymers. Experimental evidence shows that the molecular chains twist along both the long and short axes of the helical lamellar crystals, which is the first time a double-twist molecular orientation in a helical crystal has been observed.
Resumo:
Phase structures and transformation mechanisms of nonracemic chiral biological and synthetic polymers are fundamentally important topics in understanding their macroscopic responses in different environments. It has been known for many years that helical structures and morphologies can exist in low-ordered chiral liquid crystalline (LC) phases. However, when the chiral liquid crystals form highly ordered smectic liquid crystal phases, the helical morphology is suppressed due to the crystallization process. A double-twisted morphology has been observed in many liquid crystalline biopolymers such as dinoflaggellate chromosomes (in Prorocentrum micans) in an in vivo arrangement. Helical crystals grown from solution have been reported in the case of Bombyx mori silk fibroin crystals having the beta modification. This study describes a synthetic nonracemic chiral main-chain LC polyester that is able to thermotropically form helical single lamellar crystals. Flat single lamellar crystals can also be observed under the same crystallization condition. Moreover, flat and helical lamellae can coexist in one single lamellar crystal, within which one form can smoothly transform to the other. Both of these crystals possess the same structure, although translational symmetry is broken in the helical crystals. The polymer chain folding direction in both flat and helical lamellar crystals is determined to be identical, and it is always along the long axis of the lamellae. This finding provides an opportunity to study the chirality effect on phase structure, morphology, and transformation in condensed states of chiral materials. [S0163-1829(99)01042-5].
Resumo:
Polyimides were prepared from diamines: 2,4,6-trimethyl-1,3-phenylenediamine (3MPDA) and 2,3,4,5-tetramethyl-1,4-phenylenediamine (4MPDA). 1,4-Bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3'-4,4'-diphenylsulphone tetracarboxylic dianhydride (SO(2)PDA), 3,3',4,4'-diphenylsulphide tetracarboxylic dianhydride (SPDA), pyromellitic dianhydride (PMDA), and 2,2'-bis(3,4-dicarboxyphenyl)hexa-fluoroisopropane dianhydride (6FDA) were used as dianhydride. The gas permeabilities of H-2, O-2 and N-2 through the polyimides were measured at temperatures from 30 degrees C to 90 degrees C. The results show that as methyl and trifluoromethyl substitution groups densities increase from 7.73 x 10(-3) molcm(-3) to 13.50 x 10(-3)molcm(-3), the peameability of H-2 increases 10-fold at 60% loss of permselectivity of H-2/N-2 however, the permeability of O-2 increases 20-fold at 20% loss of permselectivity of O-2/N-2. For O-2/N-2 separation, PMDA-3MPDA has similar performance to 6FDA-3MPDA and 6FDA-4MPDA; all have higher permeabilities for O-2 than normal polyimides, and the P(O-2)/alpha(O-2/N-2) trade-off relationships lie on the upper bound line for polymers. (C) 1999 Society of Chemical Industry.
Resumo:
Copper phthalocyanine doped polymethacrylate Langmuir-Blodgett films were transferred to align a nematic liquid crystal 5CB, It is found that the pre-tilt angle of the liquid crystal can be controlled with the variation of the doped copper phthalocyanine molecular ratio and is correlated with the dichroic ratio of the aligning layer. The polarity of the aligning layer is regarded as the most likely underlying factor that causes the different LC alignment configurations. (C) 1997 Elsevier Science B.V.
Resumo:
Para-para linked aromatic poly(amic ester) precursors of rodlike polyimide (PI) BPDA-PDA and polyetherimide (PEI) HQDPA-ODA were synthesized. The para-para linked poly(amic ester)s were employed in this work to obtain, in theory, full-imidized polyimides. The two precursors were mixed by dissolving them in N, N'-dimethyl acetamide and subsequently coagulating in methanol. After thermal imidization, the miscibility behaviour of the resulting composites has been studied by means of dynamic mechanical analysis (d.m.a.) and differential scanning calorimetry (d.s.c.). The composites show a single glass transition temperature (T-g) at both d.m.a. and d.s.c. in which the T-g increases with increasing PI content. These Tg values are reproducible in repeated heating cycles, suggesting the true miscibility of the blends. (C) 1997 Elsevier Science Ltd.
Resumo:
The gas transport properties of a series polyetherimides, which were prepared from 1,4-bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA) with 1,3-phenylenediamine or 3,5-diaminobenzic acid (DBA) or its esters are reported. The effects of carboxylic group (-COOH) and carboxylic ether groups (-COOR), at five positions of 1,3-phenylenediamine moiety, on H-2, CO2, O-2, and N-2 permeability, diffusivity, and solubility of the polyetherimides were investigated. The gas permeability, diffusion, and solubility coefficients of the polyetherimides containing COOR are bigger than those of HQDPA-PDA, but the ideal separation factors and ideal diffusivity selectivity factors are much smaller than that of HQDPA-PDA because COOR decreases chain segmental packing efficiency and increases chain segmental mobility. The permeability coefficients of HQDPA-DBA to H-2, CO2, and O-2 are bigger than those of HQDPA-PDA; the ideal separation factors for gas pairs H-2/N-2, CO2/N-2, and O-2/N-2 are also much bigger than those of HQDPA-PDA. Both the diffusion coefficients of CO2 and O-2 and the ideal diffusivity selectivity factors for CO2/N-2 and O-2/N-2 are bigger than those of HQDPA-PDA because COOH decreases both chain segmental packing efficiency and chain segmental mobility. The copolyimides, which were prepared from 3,5-diaminobenzic acid and 3,5-diaminobenzic esters, have both high permeability and high permselectivity. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The synthesis and characterization of side-chain liquid crystalline (LC) polyacrylates containing para-nitroazobenzene (Pn) as mesogenic groups were described. Homopolymers with 3 and 4 carbon atoms in the spacers were non-LC polymers; for homopolymers with 6 carbon atoms in the spacer, nematic LC behavior was observed. Copolymers with acrylic acid as one component exhibited an S-Ad phase according to the WAXD results which showed the d/l of 1.4-1.54 for the copolymers with 3, 4, and 6 carbon atoms in the spacers. Considering the molecular structure as well as the WAXD results of the copolymers, the possible molecular arrangement in the smectic Sad phase was proposed, in which the smectic layers were composed of the antiparallel mesogens and the antiparallel arrangement was considered to be enhanced due to the H bond between - COOH and - NO2. The stress-induced orientational phenomena of Pn in the LC states was also discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The phase behaviour ai the side chain liquid crystalline polyacrylates containing p-nitro azobenzene was studied bg DSC, WAXD and the polarized optical microscopy. It was shown that nematic phase can be formed for homopolymer HP6, no LC phase can be observed for HF3 and HP4; whereas smectic S-Ad phase can be obtained tor P-n when n was equal to 3,4, 6,8. The unique phase behaviour of the copolymers P-n was due to the existence of H bond between -COOH and -NO2 which lias been confirmed by FTIR. The molecular arrangement of the copolymers in their LC states was proposed from the results of WAXD and FTIR.