790 resultados para Lésions ischémie-reperfusion
Resumo:
BACKGROUND AND PURPOSE Lesion volume on diffusion-weighted magnetic resonance imaging (DWI) before acute stroke therapy is a predictor of outcome. Therefore, patients with large volumes are often excluded from therapy. The aim of this study was to analyze the impact of endovascular treatment in patients with large DWI lesion volumes (>70 mL). METHODS Three hundred seventy-two patients with middle cerebral or internal carotid artery occlusions examined with magnetic resonance imaging before treatment since 2004 were included. Baseline data and 3 months outcome were recorded prospectively. DWI lesion volumes were measured semiautomatically. RESULTS One hundred five patients had lesions >70 mL. Overall, the volume of DWI lesions was an independent predictor of unfavorable outcome, survival, and symptomatic intracerebral hemorrhage (P<0.001 each). In patients with DWI lesions >70 mL, 11 of 31 (35.5%) reached favorable outcome (modified Rankin scale score, 0-2) after thrombolysis in cerebral infarction 2b-3 reperfusion in contrast to 3 of 35 (8.6%) after thrombolysis in cerebral infarction 0-2a reperfusion (P=0.014). Reperfusion success, patient age, and DWI lesion volume were independent predictors of outcome in patients with DWI lesions >70 mL. Thirteen of 66 (19.7%) patients with lesions >70 mL had symptomatic intracerebral hemorrhage with a trend for reduced risk with avoidance of thrombolytic agents. CONCLUSIONS There was a growing risk for poor outcome and symptomatic intracerebral hemorrhage with increasing pretreatment DWI lesion volumes. Nevertheless, favorable outcome was achieved in every third patient with DWI lesions >70 mL after successful endovascular reperfusion, whereas after poor or failed reperfusion, outcome was favorable in only every 12th patient. Therefore, endovascular treatment might be considered in patients with large DWI lesions, especially in younger patients.
Resumo:
Clinical trials have shown a beneficial effect of mechanical thrombectomy in acute ischemic stroke patients treated within six up to even 12 h after symptom onset. This treatment was already performed in selected hospitals in Belgium before completion of the randomized controlled trials. Outcome data on these procedures in Belgium have not been published. We performed a retrospective multicenter study of all patients with acute ischemic stroke treated with mechanical endovascular therapy in four hospitals in Belgium. Clinical outcomes, as measured by the modified Rankin Scale (mRS), site of arterial occlusion, reperfusion and the association between these variables were studied. The study included 80 patients: 65 patients with an occlusion in the anterior circulation and 15 with an occlusion in the posterior circulation. Good functional outcome (GFO) rates, defined as mRS 0-2 at 90 days, were 42 % in all patients, 44 % in anterior circulation stroke and 34 % in posterior circulation stroke. Reperfusion was achieved in 78 % of patients; more (100 %) in patients with posterior compared to patients with anterior circulation stroke (72 %; p = 0.02). The rate of GFO was greater in patients with reperfusion versus patients in whom reperfusion was not achieved (adjusted OR 8.2, 95 % CI 2.0-34.2). Symptomatic intracerebral hemorrhage was documented in 5 % of all patients. Endovascular treatment with mechanical devices for acute ischemic stroke in Belgium results in GFO and reperfusion rates similar to recently published results in the endovascular-treated arms of randomized clinical trials. Rates of symptomatic intracranial hemorrhage are low and comparable to other cohort studies and clinical trials.
Resumo:
BACKGROUND AND PURPOSE Mechanical thrombectomy is beneficial for patients with acute ischemic stroke and a proximal anterior occlusion, but it is unclear if these results can be extrapolated to patients with an M2 occlusion. The purpose of this study was to examine the technical aspects, safety, and outcomes of mechanical thrombectomy with a stent retriever in patients with an isolated M2 occlusion who were included in 3 large multicenter prospective studies. MATERIALS AND METHODS We included patients from the Solitaire Flow Restoration Thrombectomy for Acute Revascularization (STAR), Solitaire With the Intention For Thrombectomy (SWIFT), and Solitaire With the Intention for Thrombectomy as Primary Endovascular Treatment (SWIFT PRIME) studies, 3 large multicenter prospective studies on thrombectomy for ischemic stroke. We compared outcomes and technical details of patients with an M2 with those with an M1 occlusion. All patients were treated with a stent retriever. Imaging data and outcomes were scored by an independent core laboratory. Successful reperfusion was defined as modified Thrombolysis in Cerebral Infarction score of 2b/3. RESULTS We included 50 patients with an M2 and 249 patients with an M1 occlusion. Patients with an M2 occlusion were older (mean age, 71 versus 67 years; P = .04) and had a lower NIHSS score (median, 13 versus 17; P < .001) compared with those with an M1 occlusion. Procedural time was nonsignificantly shorter in patients with an M2 occlusion (median, 29 versus 35 minutes; P = .41). The average number of passes with a stent retriever was also nonsignificantly lower in patients with an M2 occlusion (mean, 1.4 versus 1.7; P = .07). There were no significant differences in successful reperfusion (85% versus 82%, P = .82), symptomatic intracerebral hemorrhages (2% versus 2%, P = 1.0), device-related serious adverse events (6% versus 4%, P = .46), or modified Rankin Scale score 0-2 at follow-up (60% versus 56%, P = .64). CONCLUSIONS Endovascular reperfusion therapy appears to be feasible in selected patients with ischemic stroke and an M2 occlusion.
Resumo:
BACKGROUND AND PURPOSE Previous studies have suggested that advanced age predicts worse outcome following mechanical thrombectomy. We assessed outcomes from 2 recent large prospective studies to determine the association among TICI, age, and outcome. MATERIALS AND METHODS Data from the Solitaire FR Thrombectomy for Acute Revascularization (STAR) trial, an international multicenter prospective single-arm thrombectomy study and the Solitaire arm of the Solitaire FR With the Intention For Thrombectomy (SWIFT) trial were pooled. TICI was determined by core laboratory review. Good outcome was defined as an mRS score of 0-2 at 90 days. We analyzed the association among clinical outcome, successful-versus-unsuccessful reperfusion (TICI 2b-3 versus TICI 0-2a), and age (dichotomized across the median). RESULTS Two hundred sixty-nine of 291 patients treated with Solitaire in the STAR and SWIFT data bases for whom TICI and 90-day outcome data were available were included. The median age was 70 years (interquartile range, 60-76 years) with an age range of 25-88 years. The mean age of patients 70 years of age or younger was 59 years, and it was 77 years for patients older than 70 years. There was no significant difference between baseline NIHSS scores or procedure time metrics. Hemorrhage and device-related complications were more common in the younger age group but did not reach statistical significance. In absolute terms, the rate of good outcome was higher in the younger population (64% versus 44%, P < .001). However, the magnitude of benefit from successful reperfusion was higher in the 70 years of age and older group (OR, 4.82; 95% CI, 1.32-17.63 versus OR 7.32; 95% CI, 1.73-30.99). CONCLUSIONS Successful reperfusion is the strongest predictor of good outcome following mechanical thrombectomy, and the magnitude of benefit is highest in the patient population older than 70 years of age.
Resumo:
INTRODUCTION Cardiac myocytes utilize three high-capacity Na transport processes whose precise function can determine myocyte fate and the triggering of arrhythmias in pathological settings. We present recent results on the regulation of all three transporters that may be important for an understanding of cardiac function during ischemia/reperfusion episodes. METHODS AND RESULTS Refined ion selective electrode (ISE) techniques and giant patch methods were used to analyze the function of cardiac Na/K pumps, Na/Ca exchange (NCX1), and Na/H exchange (NHE1) in excised cardiac patches and intact myocytes. To consider results cohesively, simulations were developed that account for electroneutrality of the cytoplasm, ion homeostasis, water homeostasis (i.e., cell volume), and cytoplasmic pH. The Na/K pump determines the average life-time of Na ions (3-10 minutes) as well as K ions (>30 minutes) in the cytoplasm. The long time course of K homeostasis can determine the time course of myocyte volume changes after ion homeostasis is perturbed. In excised patches, cardiac Na/K pumps turn on slowly (-30 seconds) with millimolar ATP dependence, when activated for the first time. In steady state, however, pumps are fully active with <0.2 mM ATP and are nearly unaffected by high ADP (2 mM) and Pi (10 mM) concentrations as may occur in ischemia. NCX1s appear to operate with slippage that contributes to background Na influx and inward current in heart. Thus, myocyte Na levels may be regulated by the inactivation reactions of the exchanger which are both Na- and proton-dependent. NHE1 also undergo strong Na-dependent inactivation, whereby a brief rise of cytoplasmic Na can cause inactivation that persists for many minutes after cytoplasmic Na is removed. This mechanism is blocked by pertussis toxin, suggesting involvement of a Na-dependent G-protein. Given that maximal NCX1- and NHE1-mediated ion fluxes are much greater than maximal Na/K pump-mediated Na extrusion in myocytes, the Na-dependent inactivation mechanisms of NCX1 and NHE1 may be important determinants of cardiac Na homeostasis. CONCLUSIONS Na/K pumps appear to be optimized to continue operation when energy reserves are compromised. Both NCX1 and NHE1 activities are regulated by accumulation of cytoplasmic Na. These principles may importantly control cardiac cytoplasmic Na and promote myocyte survival during ischemia/reperfusion episodes by preventing Ca overload.
Resumo:
Gebiet: Chirurgie Abstract: OBJECTIVES: – The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability, however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC), brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury, however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. – – METHODS: – Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF), 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. – – RESULTS: – Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively, P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%, P < 0.01 for all) in LoR subgroups. – – CONCLUSIONS: – Effects of MPC depend on energy substrate availability, MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.
Resumo:
Purpose. The purpose of this study was to investigate statistical differences with MR perfusion imaging features that reflect the dynamics of Gadolinium-uptake in MS lesions using dynamic texture parameter analysis (DTPA). Methods. We investigated 51 MS lesions (25 enhancing, 26 nonenhancing lesions) of 12 patients. Enhancing lesions () were prestratified into enhancing lesions with increased permeability (EL+; ) and enhancing lesions with subtle permeability (EL−; ). Histogram-based feature maps were computed from the raw DSC-image time series and the corresponding texture parameters were analyzed during the inflow, outflow, and reperfusion time intervals. Results. Significant differences () were found between EL+ and EL− and between EL+ and nonenhancing inactive lesions (NEL). Main effects between EL+ versus EL− and EL+ versus NEL were observed during reperfusion (mainly in mean and standard deviation (SD): EL+ versus EL− and EL+ versus NEL), while EL− and NEL differed only in their SD during outflow. Conclusion. DTPA allows grading enhancing MS lesions according to their perfusion characteristics. Texture parameters of EL− were similar to NEL, while EL+ differed significantly from EL− and NEL. Dynamic texture analysis may thus be further investigated as noninvasive endogenous marker of lesion formation and restoration.
Resumo:
OBJETIVES The main objective of the present randomized pilot study was to explore the effects of upstream prasugrel or ticagrelor or clopidogrel for patients with ST-segment-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PCI). BACKGROUND Administration of clopidogrel "as soon as possible" has been advocated for STEMI. Pretreatment with prasugrel and ticagrelor may improve reperfusion. Currently, the angiographic effects of upstream administration of these agents are poorly understood. METHODS A total of 132 patients with STEMI within the first 12 hr of chest pain referred to primary angioplasty were randomized to upstream clopidogrel (600 mg), prasugrel (60 mg), or ticagrelor (180 mg) while still in the emergency room. All patients underwent protocol-mandated thrombus aspiration. RESULTS Macroscopic thrombus material was retrieved in 79.5% of the clopidogrel group, 65.9% of the prasugrel group, and 54.3% of the ticagrelor group (P = 0.041). At baseline angiography, large thrombus burden was 97.7% vs. 87.8% vs. 80.4% in the clopidogrel, prasugrel, and ticagrelor groups, respectively (P = 0.036). Also, at baseline, 97.7% presented with an occluded target vessel in the clopidogrel group, 87.8% in the prasugrel group and 78.3% in the ticagrelor group (P = 0.019). At the end of the procedure, the percentages of patients with combined TIMI grade III flow and myocardial blush grade III were 52.3% for clopidogrel, 80.5% for prasugrel, and 67.4% for ticagrelor (P = 0.022). CONCLUSIONS In patients with STEMI undergoing primary PCI within 12 hr, upstream clopidogrel, prasugrel or ticagrelor have varying angiographic findings, with a trend toward better results for the latter two agents. © 2015 Wiley Periodicals, Inc.
Resumo:
Current guidelines for the treatment of hypothermic cardiocirculatory arrest recommend extracorporeal life support and rewarming, using cardiopulmonary bypass or extracorporeal membrane oxygenation circuits. Both have design-related shortcomings which may result in prolonged reperfusion time or insufficient oxygen delivery to vital organs. This article describes clear advantages of minimally invasive extracorporeal circulation systems during emergency extracorporeal life support in hypothermic arrest. The technique of minimally invasive extracorporeal circulation for reperfusion and rewarming is represented by the case of a 59-year-old patient in hypothermic cardiocirculatory arrest at 25.3°C core temperature, with multiple trauma. With femoro-femoral cannulation performed under sonographic and echocardiographic guidance, extracorporeal life support was initiated using a minimally invasive extracorporeal circulation system. Perfusing rhythm was restored at 28°C. During rewarming on the mobile circuit, trauma surveys were completed and the treatment initiated. Normothermic weaning was successful on the first attempt, trauma surgery was completed and the patient survived neurologically intact. For extracorporeal resuscitation from hypothermic arrest, minimally invasive extracorporeal circulation offers all the advantages of conventional cardiopulmonary bypass and extracorporeal membrane oxygenation systems without their shortcomings.
Resumo:
Coronary perfusion with thrombolytic therapy and selective reperfusion by percutaneous transluminal coronary angioplasty (PTCA) were examined in the Corpus Christi Heart Project, a population-based surveillance program for hospitalized acute myocardial infarction (MI) patients in a biethnic community of Mexican-Americans (MAs) and non-Hispanic whites (NHWs). Results were based on 250 (12.4%) patients who received thromobolytic therapy in a cohort of 2011 acute MI cases. Out of these 107 (42.8%) underwent PTCA with a mean follow-up of 25 months. There were 186 (74.4%) men and 64 (25.6%) women; 148 (59.2%) were NHWs, 86 (34.4%) were MAs. Thrombolysis and PTCA were performed less frequently in women than in men, and less frequently in MAs than in NHWs.^ According to the coronary reperfusion interventions used, patients were divided in two groups, those that received no-PTCA (57.2%) and the other that underwent PTCA (42.8%) after thrombolysis. The case-fatality rate was higher in no-PTCA patients than in the PTCA (7.7% versus 5.6%), as was mortality at one year (16.2% versus 10.5%). Reperfusion was successful in 48.0% in the entire cohort and (51.4% versus 45.6%) in the PTCA and no-PTCA groups. Mortality in the successful reperfusion patients was 5.0% compared to 22.3% in the unsuccessful reperfusion group (p = 0.00016, 95% CI: 1.98-11.6).^ Cardiac catheterization was performed in 86.4% thrombolytic patients. Severe stenosis ($>$75%) obstruction was present most commonly in the left descending artery (52.8%) and in the right coronary artery (52.8%). The occurrence of adverse in-hospital clinical events was higher in the no-PTCA as compared to the PTCA and catheterized patients with the exception of reperfusion arrythmias (p = 0.140; Fisher's exact test p = 0.129).^ Cox regression analysis was used to study the relationship between selected variables and mortality. Apart from successful reperfusion, age group (p = 0.028, 95% CI: 2.1-12.42), site of acute MI index (p = 0.050) and ejection-fraction (p = 0.052) were predictors of long-term survival. The ejection-fraction in the PTCA group was higher than (median 78% versus 53%) in the no-PTCA group. Assessed by logistic regression analysis history of high cholesterol ($>$200mg/dl) and diabetes mellites did have significant prognostic value (p = 0.0233; p = 0.0318) in long-term survival irrespective of treatment status.^ In conclusion, the results of this study support the idea that the use of PTCA as a selective intervention following thrombolysis improves survival of patients with acute MI. The use of PTCA in this setting appears to be safe. However, we can not exclude the possibility that some of these results may have occurred due to the exclusion from PTCA of high risk patients (selection bias). ^
Resumo:
Despite the popularity of the positron emitting glucose analog, ($\sp{18}$F) -2-deoxy-2-fluoro-D-glucose (2FDG), for the noninvasive "metabolic imaging" of organs with positron emission tomography (PET), the physiological basis for the tracer has not been tested, and the potential of 2FDG for the rapid kinetic analysis of altered glucose metabolism in the intact heart has not been fully exploited. We, therefore, developed a quantitative method to characterize metabolic changes of myocardial glucose metabolism noninvasively and with high temporal resolution.^ The first objective of the work was to provide direct evidence that the initial steps in the metabolism of 2FDG are the same as for glucose and that 2FDG is retained by the tissue in proportion to the rate of glucose utilization. The second objective was to characterize the kinetic changes in myocardial glucose transport and phosphorylation in response to changes in work load, competing substrates, acute ischemia and reperfusion, and the addition of insulin. To assess changes in myocardial glucose metabolism isolated working rat hearts were perfused with glucose and 2FDG. Tissue uptake of 2FDG and the input function were measured on-line by external detection. The steady state rate of 2FDG phosphorylation was determined by graphical analysis of 2FDG time-activity curves.^ The rate of 2FDG uptake was linear with time and the tracer was retained in its phosphorylated form. Tissue accumulation of 2FDG decreased within seconds with a reduction in work load, in the presence of competing substrates, and during reperfusion after global ischemia. Thus, most interventions known to alter glucose metabolism induced rapid parallel changes in 2FDG uptake. By contrast, insulin caused a significant increase in 2FDG accumulation only in hearts from fasted animals when perfused at a sub-physiological work load. The mechanism for this phenomenon is not known but may be related to the existence of two different glucose transporter systems and/or glycogen metabolism in the myocardial cell.^ It is concluded that (1) 2FDG traces glucose uptake and phosphorylation in the isolated working rat heart; and (2) early and transient kinetic changes in glucose metabolism can be monitored with high temporal resolution with 2FDG and a simple positron coincidence counting system. The new method has revealed transients of myocardial glucose metabolism, which would have remained unnoticed with conventional methods. These transients are not only important for the interpretation of glucose metabolic PET scans, but also provide insights into mechanisms of glucose transport and phosphorylation in heart muscle. ^
Resumo:
La reperfusión, luego de un período de isquemia miocárdica breve, puede desencadenar un daño paradojal, dentro del cual, se destacan las arritmias ventriculares. Existen estudios que reportan un efecto beneficioso del ácido acetilsalicílico (AAS) a nivel cardiovascular, pero se desconocen los efectos electrofisiológicos en el proceso de injuria por isquemia/reperfusión. El objetivo de este estudio es evaluar las propiedades electrofisiológicas del AAS, en especial si puede evitar las arritmias de reperfusión (AR) en forma independiente de su efecto antiplaquetario. Se trabajó con corazones aislados de rata Sprague Dawley según la técnica de Langendorff sometidos a 10 minutos de isquemia regional. Se realizaron 3 series esperimentales: 1) control (C, n=10); 2) , corazones perfundidos durante todo el protocolo con AAS 0.14 mM (AAS, n=10) y 3) corazones que recibieron la misma dosis de AAS sólo en los 3 primeros minutos de la reperfusión (AASR, n=9). Se analizaron la incidencia y severidad de las AR y su relación con el ECG y los potenciales de acción registrados simultáneamente. El 82% del grupo control presentó AR sostenidas, el 30 % con AAS y el 22% con AASR (ambas p<0.05 por χ2). En la reperfusión se observó que luego de los primeros tres minutos la duración del potencial de acción (DPA) fue mayor en el grupo AASR (81,5 ± 23,1) que en el grupo AAS (55,2 ± 10,0) p<0.05 por ANOVA I. Por lo tanto, la menor incidencia de AR en los grupos tratados podría asociarse al efecto de la aspirina sobre la DPA y que la droga estudiada tendría efectos sobre esta variable sólo al momento de reperfusión.
Resumo:
Superoxide and superoxide-derived oxidants have been hypothesized to be important mediators of postischemic injury. Whereas copper,zinc-superoxide dismutase, SOD1, efficiently dismutates superoxide, there has been controversy regarding whether increasing intracellular SOD1 expression would protect against or potentiate cellular injury. To determine whether increased SOD1 protects the heart from ischemia and reperfusion, studies were performed in a newly developed transgenic mouse model in which direct measurement of superoxide, contractile function, bioenergetics, and cell death could be performed. Transgenic mice with overexpression of human SOD1 were studied along with matched nontransgenic controls. Immunoblotting and immunohistology demonstrated that total SOD1 expression was increased 10-fold in hearts from transgenic mice compared with nontransgenic controls, with increased expression in both myocytes and endothelial cells. In nontransgenic hearts following 30 min of global ischemia a reperfusion-associated burst of superoxide generation was demonstrated by electron paramagnetic resonance spin trapping. However, in the transgenic hearts with overexpression of SOD1 the burst of superoxide generation was almost totally quenched, and this was accompanied by a 2-fold increase in the recovery of contractile function, a 2.2-fold decrease in infarct size, and a greatly improved recovery of high energy phosphates compared with that in nontransgenic controls. These results demonstrate that superoxide is an important mediator of postischemic injury and that increasing intracellular SOD1 dramatically protects the heart from this injury. Thus, increasing intracellular SOD1 expression may be a highly effective approach to decrease the cellular injury that occurs following reperfusion of ischemic tissues.
Resumo:
Metallothioneins (MTs) are a family of metal binding proteins that have been proposed to participate in a cellular defense against zinc toxicity and free radicals. In the present study, we investigated whether increased expression of MT in MT-1 isoform-overexpressing transgenic mice (MT-TG) affords protection against mild focal cerebral ischemia and reperfusion. Transient focal ischemia was induced in control (wild type) and MT-TG mice by occluding the right middle cerebral artery for 45 min. Upon reperfusion, cerebral edema slowly developed and peaked at 24 hr as shown by T2-weighted MRI. The volume of affected tissue was on the average 42% smaller in MT-TG mice compared with control mice at 6, 9, 24, and 72 hr and 14 days postreperfusion (P < 0.01). In addition, functional studies showed that 3 weeks after reperfusion MT-TG mice showed a significantly better motor performance compared with control mice (P = 0.011). Although cortical baseline levels of MT-1 mRNA were similar in control and MT-TG mice, there was an increase in MT-1 mRNA levels in the ischemic cortex of MT-TG mice to 7.5 times baseline levels compared with an increase to 2.3 times baseline levels in control mice 24 hr after reperfusion. In addition, MT-TG mice showed an increased MT immunoreactivity in astrocytes, vascular endothelial cells, and neurons 24 hr after reperfusion whereas in control mice MT immunoreactivity was restricted mainly to astrocytes and decreased in the infarcted tissue. These results provide evidence that increased expression of MT-1 protects against focal cerebral ischemia and reperfusion.
Resumo:
Activation of protein kinase C (PKC) protects the heart from ischemic injury; however, its mechanism of action is unknown, in part because no model for chronic activation of PKC has been available. To test whether chronic, mild elevation of PKC activity in adult mouse hearts results in myocardial protection during ischemia or reperfusion, hearts isolated from transgenic mice expressing a low level of activated PKCβ throughout adulthood (β-Tx) were compared with control hearts before ischemia, during 12 or 28 min of no-flow ischemia, and during reperfusion. Left-ventricular-developed pressure in isolated isovolumic hearts, normalized to heart weight, was similar in the two groups at baseline. However, recovery of contractile function was markedly improved in β-Tx hearts after either 12 (97 ± 3% vs. 69 ± 4%) or 28 min of ischemia (76 ± 8% vs. 48 ± 3%). Chelerythrine, a PKC inhibitor, abolished the difference between the two groups, indicating that the beneficial effect was PKC-mediated. 31P NMR spectroscopy was used to test whether modification of intracellular pH and/or preservation of high-energy phosphate levels during ischemia contributed to the cardioprotection in β-Tx hearts. No difference in intracellular pH or high-energy phosphate levels was found between the β-Tx and control hearts at baseline or during ischemia. Thus, long-term modest increase in PKC activity in adult mouse hearts did not alter baseline function but did lead to improved postischemic recovery. Furthermore, our results suggest that mechanisms other than reduced acidification and preservation of high-energy phosphate levels during ischemia contribute to the improved recovery.