960 resultados para Inheritance of regularity
Resumo:
All living organisms require accurate mechanisms to faithfully inherit their genetic material during cell division. The centromere is a unique locus on each chromosome that supports a multiprotein structure called the kinetochore. During mitosis, the kinetochore is responsible for connecting chromosomes to spindle microtubules, allowing faithful segregation of the duplicated genome. In most organisms, centromere position and function is not defined by the local DNA sequence context but rather by an epigenetic chromatin-based mechanism. Centromere protein A (CENP-A) is central to this process, as chromatin assembled from this histone H3 variant is essential for assembly of the centromere complex, as well as for its epigenetic maintenance. As a major determinant of centromere function, CENP-A assembly requires tight control, both in its specificity for the centromere and in timing of assembly. In the last few years, there have been several new insights into the molecular mechanism that allow this process to occur. We will review these here and discuss the general implications of the mechanism of cell cycle coupling of centromere inheritance.
Resumo:
The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.
Resumo:
Aim: Vascular disease such as cardiovascular and cerebrovascular diseases, or retinopathy, nephropathy and neuropathy are common in diabetes. Maturity - onset diabetes of the young (MODY) describes a clinically heterogeneous group of familial diabetes characterized by monogenic, autosomal dominant inheritance that generally results from beta cell dysfunction. This study aims to assess the presence of vascular complications on Portuguese patients with a clinical diagnosis of MODY.
Resumo:
When analysing software metrics, users find that visualisation tools lack support for (1) the detection of patterns within metrics; and (2) enabling analysis of software corpora. In this paper we present Explora, a visualisation tool designed for the simultaneous analysis of multiple metrics of systems in software corpora. Explora incorporates a novel lightweight visualisation technique called PolyGrid that promotes the detection of graphical patterns. We present an example where we analyse the relation of subtype polymorphism with inheritance and invocation in corpora of Smalltalk and Java systems and find that (1) subtype polymorphism is more likely to be found in large hierarchies; (2) as class hierarchies grow horizontally, they also do so vertically; and (3) in polymorphic hierarchies the length of the name of the classes is orthogonal to the cardinality of the call sites.
Resumo:
BACKGROUND Stiff skin syndrome and systemic or localized scleroderma are cutaneous disorders characterized by dermal fibrosis and present clinically with induration of the skin, with or without joint, internal organ or vascular involvement. OBJECTIVES To provide clinical, histological and preliminary genetic analysis of two West Highland white terrier siblings presenting with indurated skin resembling stiff skin syndrome in humans. ANIMALS Two client owned full sibling West Highland white terriers from two different litters. METHODS Clinical examination, histopathological examination and whole genome sequencing analysis of affected and unaffected West Highland white terriers. RESULTS Affected dogs exhibited markedly indurated skin that was attached firmly to the underlying tissue and incomplete closure of the mouth and eyes. No abnormalities were found by neurological or orthopaedic examination, radiographs of the head or whole body computed tomography. Histologically, the dermis and pannicular septa were thickened by a marked increase in coarse collagen fibres and a mild to moderate increase in collagen fibre diameter. The syndrome most likely follows an autosomal recessive mode of inheritance. The sequence analysis did not reveal any obvious causative variant in the investigated candidate genes ADAMTSL2 and FBN1. CONCLUSION AND CLINICAL IMPORTANCE The clinical phenotype and histopathological features of two West Highland white terrier siblings resembled stiff skin syndrome in humans. Unlike in humans, or previously described beagles with stiff skin, there was no restriction of joint mobility. Genetic analysis did not detect a candidate causative variant and warrants further research.
Resumo:
Background Lethal chondrodysplasia (bulldog syndrome) is a well-known congenital syndrome in cattle and occurs sporadically in many breeds. In 2015, it was noticed that about 12 % of the offspring of the phenotypically normal Danish Holstein sire VH Cadiz Captivo showed chondrodysplasia resembling previously reported bulldog calves. Pedigree analysis of affected calves did not display obvious inbreeding to a common ancestor, suggesting the causative allele was not a rare recessive. The normal phenotype of the sire suggested a dominant inheritance with incomplete penetrance or a mosaic mutation. Results Three malformed calves were examined by necropsy, histopathology, radiology, and computed tomography scanning. These calves were morphologically similar and displayed severe disproportionate dwarfism and reduced body weight. The syndrome was characterized by shortening and compression of the body due to reduced length of the spine and the long bones of the limbs. The vicerocranium had severe dysplasia and palatoschisis. The bones had small irregular diaphyses and enlarged epiphyses consisting only of chondroid tissue. The sire and a total of four affected half-sib offspring and their dams were genotyped with the BovineHD SNP array to map the defect in the genome. Significant genetic linkage was obtained for several regions of the bovine genome including chromosome 5 where whole genome sequencing of an affected calf revealed a COL2A1 point mutation (g.32473300 G > A). This private sequence variant was predicted to affect splicing as it altered the conserved splice donor sequence GT at the 5’-end of COL2A1 intron 36, which was changed to AT. All five available cases carried the mutant allele in heterozygous state and all five dams were homozygous wild type. The sire VH Cadiz Captivo was shown to be a gonadal and somatic mosaic as assessed by the presence of the mutant allele at levels of about 5 % in peripheral blood and 15 % in semen. Conclusions The phenotypic and genetic findings are comparable to a previously reported COL2A1 missense mutation underlying lethal chondrodysplasia in the offspring of a mosaic French Holstein sire (Igale Masc). The identified independent spontaneous splice site variant in COL2A1 most likely caused chondrodysplasia and must have occurred during the early foetal development of the sire. This study provides a first example of a dominant COL2A1 splice site variant as candidate causal mutation of a severe lethal chondrodysplasia phenotype. Germline mosaicism is a relatively frequent mechanism in the origin of genetic disorders and explains the prevalence of a certain fraction of affected offspring. Paternal dominant de novo mutations are a risk in cattle breeding, especially because the ratio of defective offspring may be very high and be associated with significant animal welfare problems.
Resumo:
Alkanes having unusual saturated isoprenoidal and methyl-branched structures have been isolated from the bitumen of several sediments. The methanogenic biomarkers 2,6,10,15,19-pentamethyleicosane and squalane were found in sediments which also contained bacteriogenic glycerol ethers. However, in one ether-containing sediment, 2,6,10,13,17,21-hexamethyldocosane was tentatively identified and this compound was found in place of the established alkane biomarkers. Other hydrocarbons found were regular C21 and C23 isoprenoid alkanes, compounds which cannot be derived from phytol; two isoprenoids of the type 3,7,11.-polymethylalkane, previously reported only in petroleums; 8-methylheptadecane, a probable biomarker for cyanobacteria and a number of its homologs and other methyl-branched alkanes. Ubiquitous branched-chain alkylbenzenes and a homology of trimethylalkylbenzenes were also isolated. Most, or all, of the compounds reported here are probably not catagenetic products but may represent direct algal or bacterial bioinputs.
Resumo:
High- to very-high-grade migmatitic basement rocks of the Wilson Hills area in northwestern Oates Land (Antarctica) form part of a low-pressure high-temperature belt located at the western inboard side of the Ross-orogenic Wilson Terrane. Zircon, and in part monazite, from four very-high grade migmatites (migmatitic gneisses to diatexites) and zircon from two undeformed granitic dykes from a central granulite-facies zone of the basement complex were dated by the SHRIMP U-Pb method in order to constrain the timing of metamorphic and related igneous processes and to identify possible age inheritance. Monazite from two migmatites yielded within error identical ages of 499 +/- 10 Ma and 493 +/- 9 Ma. Coexisting zircon gave ages of 500 +/- 4 Ma and 484 +/- 5 Ma for a metatexite (two age populations) and 475 +/- 4 Ma for a diatexite. Zircon populations from a migmatitic gneiss and a posttectonic granitic dyke yielded well-defined ages of 488 +/- 6 Ma and 482 +/- 4 Ma, respectively. There is only minor evidence of age inheritance in zircons of these four samples. Zircon from two other samples (metatexite, posttectonic granitic dyke) gave scattered 206Pb-238U ages. While there is a component similar in age and in low Th/U ratio to those of the other samples, inherited components with ages up to c. 3 Ga predominate. In the metatexite, a major detrital contribution from 545 - 680 Ma old source rocks can be identified. The new age data support the model that granulite- to high-amphibolite-facies metamorphism and related igneous processes in basement rocks of northwestern Oates Land were confined to a relatively short period of time of Late Cambrian to early Ordovican age. An age of approximately 500 Ma is estimated for the Ross-orogenic granulite-facies metamorphism from consistent ages of monazite from two migmatites and of the older zircon age population in one metatexite. The variably younger zircon ages are interpreted to reflect mineral formation in the course of the post-granulite-facies metamorphic evolution, which led to a widespread high-amphibolite-facies retrogression and in part late-stage formation of ms+bi assemblages in the basement rocks and which lasted until about 465 Ma. The presence of inherited zircon components of latest Neoproterozoic to Cambrian age indicates that the high- to very-grade migmatitic basement in northwestern Oates Land originated from clastic series of Cambrian age and, therefore, may well represent the deeper-crustal equivalent of lower-grade metasedimentary series of the Wilson Terrane.
Resumo:
This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.
Resumo:
Publisher's advertisements: [1] p. on half t.p. verso.
Resumo:
Text in two columns.
Resumo:
Cover title.
Resumo:
Includes index.