894 resultados para INDUCE APOPTOSIS
Resumo:
Cancer is a term used to represent a set of more than 100 diseases, including malignant tumors from different locations. The malignancies are the second leading cause of death in the population, representing approximately 17% of deaths of known cause. Strategies that induce differentiation have had limited success in the treatment of established cancers. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated due to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death via apoptosis in tumor cells. The antiproliferative activity of CaL was tested against cell lines, with the highest inhibition of tumor growth for HeLa, reducing cell growth at a dose dependent manner, with a concentration of 10 μg/mL. The hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. The results showed the lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase, with accumulation of cells of approximately 57% in this phase, and acting as both dependent and/or independent of caspases pathway. These results suggest that CaL has the potential to be used as drug treatment against cancer.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Most of our knowledge concerning the virulence determinants of pathogenic fungi comes from the infected host, mainly from animal models and more recently from in vitro studies with cell cultures. The fungi usually present intra- and/or extracellular host-parasite interfaces, with the parasitism phenomenon dependent on complementary surface molecules. Among living organisms, this has been characterized as a cohabitation event, where the fungus is able to recognize specific host tissues acting as an attractant, creating stable conditions for its survival. Several fungi pathogenic for humans and animals have evolved special strategies to deliver elements to their cellular targets that may be relevant to their pathogenicity. Most of these pathogens express surface factors that mediate binding to host cells either directly or indirectly, in the latter case binding to host adhesion components such as extracellular matrix (ECM) proteins, which act as 'interlinking' molecules. The entry of the pathogen into the host cell is initiated by fungal adherence to the cell surface, which generates an uptake signal that may induce its cytoplasmic internalization. Once this is accomplished, some fungi are able to alter the host cytoskeletal architecture, as manifested by a rearrangement of microtubule and microfilament proteins, and this can also induce epithelial host cells to become apoptotic. It is possible that fungal pathogens induce modulation of different host cell pathways in order to evade host defences and to foster their own proliferation. For a number of pathogens, the ability to bind ECM glycoproteins, the capability of internalization and the induction of apoptosis are considered important factors in virulence. Furthermore, specific recognition between fungal parasites and their host cell targets may be mediated by the interaction of carbohydrate-binding proteins, e.g., lectins on the surface of one type of cell, probably a parasite, that combine with complementary sugars on the surface of host-cell. These interactions supply precise models to study putative adhesins and receptor-containing molecules in the context of the fungus-host interface. The recognition of the host molecules by fungi such as Aspergillus fumigatus, Paracoccidioides brasiliensis and Histoplasma capsulatum, and their molecular mechanisms of adhesion and invasion, are reviewed in this paper.
Resumo:
Paracoccidioidomycosis is a deep endemic mycosis associated with an antigen-specific immunodeficiency. To examine the role of apoptosis in this immunodeficiency, peripheral blood mononuclear cells (PBMC) of patients with paracoccidioidomycosis and controls were stimulated with the main antigen of Paracoccidioides brasiliensis (gp43) and an unrelated fungal antigen (from Candida albicans, CMA) and analyzed for annexin V and propidium iodide staining by flow cytometry. Control PBMC proliferated well with both antigens. Patients' PBMC proliferated only with CMA, but presented higher levels of apoptosis with gp43 and CMA than in their own unstimulated cultures. Moreover, gp43-triggered apoptosis in control PBMC was lower than in those of the patients. Thus, patient but not control gp43-stimulated T cells apparently remained anergized and subsequently underwent apoptosis. While CMA-induced apoptosis is likely triggered by activation-induced cell death, this is apparently not the case in gp43-induced apoptosis because of the lack of cell cycling and IL-2 in the gp43-stimulated cultures. However, higher IL-10 levels were found in gp43-stimulated patient PBMC cultures. Addition of a neutralizing anti-IL-10 antibody to the cultures resulted in increased apoptosis levels only in gp43-stimulated patient PBMC cultures. Our results suggest that apoptosis plays a role in the patients' antigen-specific hyporesponsiveness and that IL-10 may have an antiapoptotic role. (C) 2002 Elsevier B.V. (USA).
Resumo:
Paracoccidioides brasiliensis (Pb) yeast cells can enter mammalian cells and probably manipulate the host cell environment to favor their own growth and survival. We studied the uptake of strain Pb 18 into A549 lung and Vero epithelial cells, with an emphasis on the repercussions in the cytoskeleton and the apoptosis of host cells. Cytoskeleton components of the host cells, such as actin and tubulin, were involved in the P. brasiliensis invasion process. Cytochalasin D and colchicine treatment substantially reduced invasion, indicating the functional participation of microfilaments (MFs) and microtubules (MTs) in this mechanism. Cytokeratin could also play a role in the P. brasiliensis interaction with the host. Gp43 was recognized by anti-actin and anti-cytokeratin antibodies, but not by anti-tubulin. The apoptosis induced by this fungus in infected epithelial cells was demonstrated by various techniques: TUNEL, DNA fragmentation and Bak and Bcl-2 immunocytochemical expression. DNA fragmentation was observed in infected cells but not in uninfected ones, by both TUNEL and gel electrophoresis methods. Moreover, Bcl-2 and Bak did not show any differences until 24 h after infection of cells, suggesting a competitive mechanism that allows persistence of infection. Overexpression of Bak was observed after 48 h, indicating the loss of competition between death and survival signals. In conclusion, the mechanisms of invasion of host cells, persistence within them, and the subsequent induction of apoptosis of such cells may explain the efficient dissemination of P. brasiliensis. (C) 2004 Published by Elsevier SAS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. Hyperglycemia is associated with a decreased tolerance to ischemia and an increased severity of renal ischemia reperfusion (I/R) injury. It has been suggested that erythropoietin (EPO) attenuates this effect in normoglycemic animals. This study sought to examine the effects of EPO on treatment renal I/R injury (IRI) in transiently hyperglycemic rats.Material and Methods. Twenty-eight male Wister rats anesthetized with isoflurane received glucose (2.5 g.kg(-1) intraperitoneally) before right nephrectomy. They were randomly assigned to four groups: sham operation (S); IRI (ISO); IRI+EPO, (600 UI kg(-1) low-dose EPO [EL]); and IRI+EPO 5000 UI kg(-1) (high-dose EPO [EH]). IRI was induced by a 25-minute period of left renal ischemia followed by reperfusion for 24 hours. Serum Creatinine and glucose levels were measure at baseline (M1), immediately after the ischemic period (M2), and at 24 hours after reperfusion (M3). After sacrificing the animals, left kidney specimens were submitted for histological analysis including flow cytometry to estimate tubular necrosis and the percentages of apoptotic, dead or intact cells.Results. Scr in the ISO group was significantly higher at M3 than among the other groups. Percentages of early apoptotic cells in ISO group were significantly higher than the other groups. Percentages of late apoptotic cells in S and ISO groups were significantly greater than EL and EH groups. However, no significant intergroup differences were observed regarding the incidence of tubular necrosis.Conclusions. Our results suggested that, although not preventing the occurrence of tubular necrosis, EPO attenuated apoptosis and glomerular functional impairment among transiently hyperglycemic rats undergoing an ischemia/reperfusion insult.