990 resultados para Hydrogen permeation current
Resumo:
The principle of operation of a dual current source converter is briefly explained. The combination of two single current source converters (SCSC) to form a ``dual (duplex) current source converter'' (DCSC) is proposed. The DCSC is shown to have the following merits: 1) it retains all the advantages of the SCSC; 2) it reduces the harmonic content of the current waveform considerably; and 3) since the load current is shared equally between two current source converters, ratings of the individual components employed in the circuit are considerably lowered. A DCSC can be an attractive choice for sophisticated large horsepower drives where a good performance of the drive rather than cost is a prime factor. An open-loop control scheme employing the DCSC for an ac motor drive has been successfully implemented in the laboratory. Oscillograms of the improved load current waveforms are shown.
Resumo:
Chloroquinones are prepared conveniently from phenol, naphthols and aromatic amines.
Resumo:
Qualitative potential energy surfaces for hydrogen abstraction from alkanes containing primary, secondary and tertiary C-H bonds by a photo-excited ketone have been reported, The results suggest that the activation barriers for these processes decrease in the order primary > secondary > tertiary in agreement with the observed trend in the rate constants. The analysis of the electronic structure of the transition-state reveal that electron-transfer from hydrocarbon to ketone and formation of a new bond are almost synchronous in the hydrogen transfer process. The tunneling of hydrogen is not important in the normal temperature region even though the barriers are small.
Resumo:
Organocatalysis, the use of organic molecules as catalysts, is attracting increasing attention as one of the most modern and rapidly growing areas of organic chemistry, with countless research groups in both academia and the pharmaceutical industry around the world working on this subject. The literature review of this thesis mainly focuses on metal-free systems for hydrogen activation and organocatalytic reduction. Since these research topics are relatively new, the literature review also highlights the basic principles of the use of Lewis acid-Lewis base pairs, which do not react irreversibly with each other, as a trap for small molecules. The experimental section progresses from the first observation of the facile heterolytical cleavage of hydrogen gas by amines and B(C6F5)3 to highly active non-metal catalysts for both enantioselective and racemic hydrogenation of unsaturated nitrogen-containing compounds. Moreover, detailed studies of structure-reactivity relationships of these systems by X-ray, neutron diffraction, NMR methods and quantum chemical calculations were performed to gain further insight into the mechanism of hydrogen activation and hydrogenation by boron-nitrogen compounds.
Resumo:
Highly stable varistor (voltage-limiting) property is observed for ceramics based on donor doped (Ba1-xSrx)Ti1-yZryO3 (x < 0.35, y < 0.05), when the ambient temperature (T(a)) is above the Curie point (T(c)). If T(a) < T(c), the same ceramics showed stable current-limiting behavior. The leakage current and the breakdown voltage as well as the nonlinearity coefficient (alpha = 30-50) could be varied with the T(c)-shifting components, the grain boundary layer modifiers and the post-sintering annealing. Analyses of the current-voltage relations show that grain boundary layer conduction at T(a) < T(c) corresponds to tunneling across asymmetric barriers formed under steady-state joule heating. At T(a) > T(c), trap-related conduction gives way to tunneling across symmetric barriers as the field strength increases.
Resumo:
Catalytic combustion of H-2 was carried out over combustion synthesized noble metal (Pd or Pt) ion-substituted CeO2 based catalysts using a feed stream that simulated exhaust gases from a fuel cell processor The catalysts showed a high activity for H-2-combustion and complete conversion was achieved below 200 C over all the catalysts when O-2 was used in a stoichiometric amount With higher amounts of O-2 the reaction rates Increased and complete conversions were possible below 100 C The reaction was also carried out over Pd-impregnated CeO2 The conversions of H-2 with stoichiometric amount of O-2 were found to be higher over Pd-substituted compound The mechanism of the reaction over noble metal-substituted compounds was proposed on the basis of X-ray photoelectron spectroscopy studies The redox couples between Ce and metal ions were established and a dual site redox mechanism was pi posed for the reaction (C) 2010 Elsevier B V All rights reserved
Resumo:
Grid connected PWM-VSIs are being increasingly used for applications such as Distributed Generation (DG), power quality, UPS etc. Appropriate control strategies for grid synchronisation and line current regulation are required to establish such a grid interconnection and power transfer. Control of three phase VSIs is widely reported in iterature. Conventionally, dq control in Synchronous Reference Frame(SRF) is employed for both PLL and line current control where PI-controllers are used to track the DC references. Single phase systems do not have defined direct (d) and quadrature (q) axis components that are required for SRF transformation. Thus, references are AC in nature and hence usage of PI controllers cannot yield zero steady state errors. Resonant controllers have the ability to track AC references accurately. In this work, a resonant controller based single phase PLL and current control technique are being employed for tracking grid frequency and the AC current reference respectively. A single phase full bridge converter is being operated as a STATCOM for performance evaluation of the control scheme.
Resumo:
Conformational analysis of cyclic pentapeptides having two intra-ring 3 leads to 1 hydrogen bonds has been carried out. It is found that the structure can easily be formed with trans planar peptide units without causing significant angular strain at the alpha-carbon atoms. Four different types of conformations designated Types I--IV are possible for the backbone structure. Details of these four types of conformations and also the accommodating possibility of these types for allglycyl and all-alanyl residues are presented. Three of the four types have relatively low energies for glycyl residues whereas the other one has a slightly higher energy. When alanyl residues are introduced at the five alpha-carbon atoms, the types that are energetically favourable depend upon the sequence of isomers. Energy calculations have also been carried out for the combinations of glycyl, L- and D-alanyl residues. The theoretical results are compared with available experimental observations both from solution and solid state studies.
Resumo:
A mathematical model is developed to describe the hydraircooling process when the water and air are flowing in the same direction. The governing equations for the simultaneous heat and mass transfer are solved using finite-difference numerical methods. The half cooling time of the food products is correlated as a function of the dimensionless process parameters. It is observed that a process time of approximately double the half cooling time will result in the food products attaining almost a steady state. The process times of the bulk hydraircooling process and the bulk air precooling process are compared.
Resumo:
Chill treatment of potato tubers for 8 days induced mitochondrial O-2 consumption by cyanide-insensitive alternative oxidase (AOX). About half of the total O-2 consumption in such mitochondria was found to be sensitive to salicylhydroxamate (SHAM), a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive O-2 consumption by nearly half, and addition at the end of the reaction released half of the O-2 consumed by AOX, both typical of catalase action on H2O2. This reaffirmed that the product of reduction of O-2 by plant AOX was H2O2 as found earlier and not H2O as reported in some recent reviews.
Resumo:
A catalytic hydrogen combustion reaction was carried out over noble metal catalysts substituted in ZrO2 and TiO2 in ionic form. The catalysts were synthesized by the solution combustion technique. The compounds showed high activity and CO tolerance for the reaction. The activity of Pd and Pt ion substituted TiO2 was comparable and was higher than Pd and Pt ion substituted ZrO2. The mechanisms of the reaction over the two supports were proposed by making use of the X-ray photoelectron spectroscopy and FT infrared spectroscopic observations. The reaction over ZrO2 supported catalysts was proposed to take place by the utilization of the surface hydroxyl groups while the reaction over TiO2 supported catalysts was hypothesized to be a hybrid mechanism utilizing surface hydroxyl groups and the lattice oxygen.
Resumo:
Fenvalerate is a widely used pyrethroid insecticide. The report presents our findings on the effect of fenvalerate on isolated whole-cell sodium currents in single rat dorsal root ganglionic neurons in culture, studied with patch-clamp technique. Fenvalerate decreased the amplitude of whole-cell sodium current and slowed the inactivation and tail current kinetics.