931 resultados para High-frequency stability


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature-dependent Raman spectra of TbMnO3 from 5 to 300 K in the spectral range of 200-1525 cm(-1) show five first-order Raman allowed modes and two high frequency modes. The intensity ratio of the high frequency Raman band to the corresponding first-order Raman mode is nearly constant and high (similar to 0.6) at all temperatures, suggesting an orbiton-phonon mixed nature of the high frequency mode. One of the first-order phonon modes shows anomalous softening below T-N (similar to 46 K), suggesting a strong spin-phonon coupling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Transition Radiation Tracker (TRT) of the ATLAS experiment at the LHC is part of the Inner Detector. It is designed as a robust and powerful gaseous detector that provides tracking through individual drift-tubes (straws) as well as particle identification via transition radiation (TR) detection. The straw tubes are operated with Xe-CO2-O2 70/27/3, a gas that combines the advantages of efficient TR absorption, a short electron drift time and minimum ageing effects. The modules of the barrel part of the TRT were built in the United States while the end-cap wheels are assembled at two Russian institutes. Acceptance tests of barrel modules and end-cap wheels are performed at CERN before assembly and integration with the Semiconductor Tracker (SCT) and the Pixel Detector. This thesis first describes simulations the TRT straw tube. The argon-based acceptance gas mixture as well as two xenon-based operating gases are examined for its properties. Drift velocities and Townsend coefficients are computed with the help of the program Magboltz and used to study electron drift and multiplication in the straw using the software Garfield. The inclusion of Penning transfers in the avalanche process leads to remarkable agreements with experimental data. A high level of cleanliness in the TRT s acceptance test gas system is indispensable. To monitor gas purity, a small straw tube detector has been constructed and extensively used to study the ageing behaviour of the straw tube in Ar-CO2. A variety of ageing tests are presented and discussed. Acceptance tests for the TRT survey dimensions, wire tension, gas-tightness, high-voltage stability and gas gain uniformity along each individual straw. The thesis gives details on acceptance criteria and measurement methods in the case of the end-cap wheels. Special focus is put on wire tension and straw straightness. The effect of geometrically deformed straws on gas gain and energy resolution is examined in an experimental setup and compared to simulation studies. An overview of the most important results from the end-cap wheels tested up to this point is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sol-gel derived PbZrO3 (PZ) thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate and according to the pseudotetragonal symmetry of PZ, the relatively preferred (110)t oriented phase formation has been noticed. The room temperature P‐E hysteresis loops have been observed to be slim by nature. The slim hysteresis loops are attributed to the [110]t directional antiparallel lattice motion of Pb ions and by the directionality of the applied electric field. Pure PZ formation has been characterized by the dielectric phase transition at 235 °C and antiferroelectric P‐E hysteresis loops at room temperature. Dielectric response has been characterized within a frequency domain of 100 Hz–1 MHz at various temperatures ranging from 40 to 350 °C. Though frequency dispersion of dielectric behaves like a Maxwell–Wagner type of relaxation, ω2 dependency of ac conductivity indicates that there must be G‐C equivalent circuit dominance at high frequency. The presence of trap charges in PZ has been determined by Arrhenius plots of ac conductivity. The temperature dependent n (calculated from the universal power law of ac conductivity) values indicate an anomalous behavior of the trapped charges. This anomaly has been explained by strongly and weakly correlated potential wells of trapped charges and their behavior on thermal activation. The dominance of circuit∕circuits resembling Maxwell–Wagner type has been investigated by logarithmic Nyquist plots at various temperatures and it has been justified that the dielectric dispersion is not from the actual Maxwell–Wagner-type response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Agricultural pests are responsible for millions of dollars in crop losses and management costs every year. In order to implement optimal site-specific treatments and reduce control costs, new methods to accurately monitor and assess pest damage need to be investigated. In this paper we explore the combination of unmanned aerial vehicles (UAV), remote sensing and machine learning techniques as a promising technology to address this challenge. The deployment of UAVs as a sensor platform is a rapidly growing field of study for biosecurity and precision agriculture applications. In this experiment, a data collection campaign is performed over a sorghum crop severely damaged by white grubs (Coleoptera: Scarabaeidae). The larvae of these scarab beetles feed on the roots of plants, which in turn impairs root exploration of the soil profile. In the field, crop health status could be classified according to three levels: bare soil where plants were decimated, transition zones of reduced plant density and healthy canopy areas. In this study, we describe the UAV platform deployed to collect high-resolution RGB imagery as well as the image processing pipeline implemented to create an orthoimage. An unsupervised machine learning approach is formulated in order to create a meaningful partition of the image into each of the crop levels. The aim of the approach is to simplify the image analysis step by minimizing user input requirements and avoiding the manual data labeling necessary in supervised learning approaches. The implemented algorithm is based on the K-means clustering algorithm. In order to control high-frequency components present in the feature space, a neighbourhood-oriented parameter is introduced by applying Gaussian convolution kernels prior to K-means. The outcome of this approach is a soft K-means algorithm similar to the EM algorithm for Gaussian mixture models. The results show the algorithm delivers decision boundaries that consistently classify the field into three clusters, one for each crop health level. The methodology presented in this paper represents a venue for further research towards automated crop damage assessments and biosecurity surveillance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon nanotubes, seamless cylinders made from carbon atoms, have outstanding characteristics: inherent nano-size, record-high Young’s modulus, high thermal stability and chemical inertness. They also have extraordinary electronic properties: in addition to extremely high conductance, they can be both metals and semiconductors without any external doping, just due to minute changes in the arrangements of atoms. As traditional silicon-based devices are reaching the level of miniaturisation where leakage currents become a problem, these properties make nanotubes a promising material for applications in nanoelectronics. However, several obstacles must be overcome for the development of nanotube-based nanoelectronics. One of them is the ability to modify locally the electronic structure of carbon nanotubes and create reliable interconnects between nanotubes and metal contacts which likely can be used for integration of the nanotubes in macroscopic electronic devices. In this thesis, the possibility of using ion and electron irradiation as a tool to introduce defects in nanotubes in a controllable manner and to achieve these goals is explored. Defects are known to modify the electronic properties of carbon nanotubes. Some defects are always present in pristine nanotubes, and naturally are introduced during irradiation. Obviously, their density can be controlled by irradiation dose. Since different types of defects have very different effects on the conductivity, knowledge of their abundance as induced by ion irradiation is central for controlling the conductivity. In this thesis, the response of single walled carbon nanotubes to ion irradiation is studied. It is shown that, indeed, by energy selective irradiation the conductance can be controlled. Not only the conductivity, but the local electronic structure of single walled carbon nanotubes can be changed by the defects. The presented studies show a variety of changes in the electronic structures of semiconducting single walled nanotubes, varying from individual new states in the band gap to changes in the band gap width. The extensive simulation results for various types of defect make it possible to unequivocally identify defects in single walled carbon nanotubes by combining electronic structure calculations and scanning tunneling spectroscopy, offering a reference data for a wide scientific community of researchers studying nanotubes with surface probe microscopy methods. In electronics applications, carbon nanotubes have to be interconnected to the macroscopic world via metal contacts. Interactions between the nanotubes and metal particles are also essential for nanotube synthesis, as single walled nanotubes are always grown from metal catalyst particles. In this thesis, both growth and creation of nanotube-metal nanoparticle interconnects driven by electron irradiation is studied. Surface curvature and the size of metal nanoparticles is demonstrated to determine the local carbon solubility in these particles. As for nanotube-metal contacts, previous experiments have proved the possibility to create junctions between carbon nanotubes and metal nanoparticles under irradiation in a transmission electron microscope. In this thesis, the microscopic mechanism of junction formation is studied by atomistic simulations carried out at various levels of sophistication. It is shown that structural defects created by the electron beam and efficient reconstruction of the nanotube atomic network, inherently related to the nanometer size and quasi-one dimensional structure of nanotubes, are the driving force for junction formation. Thus, the results of this thesis not only address practical aspects of irradiation-mediated engineering of nanosystems, but also contribute to our understanding of the behaviour of point defects in low-dimensional nanoscale materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report that an approximant phase was initially obtained in amorphous Ti40Zr20Hf20Pd20 alloy. In the initial stage of the devitrification process, the approximant phase transforms into an icosahedral (1) phase with a high thermal stability while the cF96 Zr2Ni-type (space group Fd (3) over barm with a = 1.25 nm and 96 atoms cell(-1)) particles precipitate from the amorphous matrix. Eventually the I phase grows to several hundred nanometers when annealed at about 1000 K and then transforms into the Zr2Ni-type phase with an endothermic reaction. (c) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We evaluated trained listener-based acoustic sampling as a reliable and non-invasive method for rapid assessment of ensiferan species diversity in tropical evergreen forests. This was done by evaluating the reliability of identification of species and numbers of calling individuals using psychoacoustic experiments in the laboratory and by comparing psychoacoustic sampling in the field with ambient noise recordings made at the same time. The reliability of correct species identification by the trained listener was 100% for 16 out of 20 species tested in the laboratory. The reliability of identifying the numbers of individuals correctly was 100% for 13 out of 20 species. The human listener performed slightly better than the instrument in detecting low frequency and broadband calls in the field, whereas the recorder detected high frequency calls with greater probability. To address the problem of pseudoreplication during spot sampling in the field, we monitored the movement of calling individuals using focal animal sampling. The average distance moved by calling individuals for 17 out of 20 species was less than 1.5 m in half an hour. We suggest that trained listener-based sampling is preferable for crickets and low frequency katydids, whereas broadband recorders are preferable for katydid species with high frequency calls for accurate estimation of ensiferan species richness and relative abundance in an area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report interesting anomalies in the temperature dependent Raman spectra of FeSe0.82 measured from 3 K to 300 K in the spectral range from 60 to 1800 cm(-1) and determine their origin using complementary first-principles density functional calculations. A phonon mode near 100 cm-1 exhibits a sharp increase by similar to 5% in the frequency below a temperature T-s (similar to 100 K) attributed to strong spin-phonon coupling and onset of short-range antiferromagnetic order. In addition, two high frequency modes are observed at 1350 cm-1 and 1600 cm-1, attributed to electronic Raman scattering from (x(2)-y(2)) to xz/yz d-orbitals of Fe. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

1] The poor predictability of the Indian summer monsoon ( ISM) appears to be due to the fact that a large fraction of interannual variability (IAV) is governed by unpredictable "internal'' low frequency variations. Mechanisms responsible for the internal IAV of the monsoon have not been clearly identified. Here, an attempt has been made to gain insight regarding the origin of internal IAV of the seasonal ( June - September, JJAS) mean rainfall from "internal'' IAV of the ISM simulated by an atmospheric general circulation model (AGCM) driven by fixed annual cycle of sea surface temperature (SST). The underlying hypothesis that monsoon ISOs are responsible for internal IAV of the ISM is tested. The spatial and temporal characteristics of simulated summer intraseasonal oscillations ( ISOs) are found to be in good agreement with those observed. A long integration with the AGCM forced with observed SST, shows that ISO activity over the Asian monsoon region is not modulated by the observed SST variations. The internal IAV of ISM, therefore, appears to be decoupled from external IAV. Hence, insight gained from this study may be useful in understanding the observed internal IAV of ISM. The spatial structure of the ISOs has a significant projection on the spatial structure of the seasonal mean and a common spatial mode governs both intraseasonal and interannual variability. Statistical average of ISO anomalies over the season ( seasonal ISO bias) strengthens or weakens the seasonal mean. It is shown that interannual anomalies of seasonal mean are closely related to the seasonal mean of intraseasonal anomalies and explain about 50% of the IAV of the seasonal mean. The seasonal mean ISO bias arises partly due to the broad-band nature of the ISO spectrum allowing the time series to be aperiodic over the season and partly due to a non-linear process where the amplitude of ISO activity is proportional to the seasonal bias of ISO anomalies. The later relation is a manifestation of the binomial character of rainfall time series. The remaining 50% of the IAV may arise due to land-surface processes, interaction between high frequency variability and ISOs, etc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Results of measurements at a high frequency on reverse bias capacitance of copper-doped germanium junctions are reported. Phenomenal increase in capacitance is found in the breakdown region, particularly at low temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compute AC electrical transport at quantum Hall critical points, as modeled by intersecting branes and gauge/gravity duality. We compare our results with a previous field theory computation by Sachdev, and find unexpectedly good agreement. We also give general results for DC Hall and longitudinal conductivities valid for a wide class of quantum Hall transitions, as well as (semi)analytical results for AC quantities in special limits. Our results exhibit a surprising degree of universality; for example, we find that the high frequency behavior, including subleading behavior, is identical for our entire class of theories.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Raman spectrum of crystalline boric acid is recorded using mercuryλ2537 excitation. Fifteen Raman lines, three of them belonging to the lattice spectrum, are reported. Satisfactory assignments of all the observed Raman frequencies are made using the available X-ray crystal structure data. From the presence of a new high frequency Raman band at about 3420 cm.−1 it is suggested that there might be a small number of long, weak O-H....O hydrogen bonds in the crystal, in addition to the hydrogen bonds of moderate strength reported from X-ray diffraction data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Raman spectra of methyl alcohol, ethyl alcohol, n-propyl alcohol and n-butyl alcohol have been recorded using λ 2537 excitation. 35, 49, 45 and 51 Raman lines respectively have been identified in the spectra of these alcohols, in addition to the rotational 'wings'. In each case, a large number of additional lines have been recorded. The existence of Raman lines with frequency shifts greater than 3800 cm.-1, first reported by Bolla in the spectrum of ethyl alcohol, has been confirmed. Similar high-frequency shift Raman lines have also been recorded in the spectrum of methyl alcohol. They have been assigned as combinations. Proper assignments have been given for the prominent Raman lines appearing in the spectra of these alcohols.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increased availability of high frequency data sets have led to important new insights in understanding of financial markets. The use of high frequency data is interesting and persuasive, since it can reveal new information that cannot be seen in lower data aggregation. This dissertation explores some of the many important issues connected with the use, analysis and application of high frequency data. These include the effects of intraday seasonal, the behaviour of time varying volatility, the information content of various market data, and the issue of inter market linkages utilizing high frequency 5 minute observations from major European and the U.S stock indices, namely DAX30 of Germany, CAC40 of France, SMI of Switzerland, FTSE100 of the UK and SP500 of the U.S. The first essay in the dissertation shows that there are remarkable similarities in the intraday behaviour of conditional volatility across European equity markets. Moreover, the U.S macroeconomic news announcements have significant cross border effect on both, European equity returns and volatilities. The second essay reports substantial intraday return and volatility linkages across European stock indices of the UK and Germany. This relationship appears virtually unchanged by the presence or absence of the U.S stock market. However, the return correlation among the U.K and German markets rises significantly following the U.S stock market opening, which could largely be described as a contemporaneous effect. The third essay sheds light on market microstructure issues in which traders and market makers learn from watching market data, and it is this learning process that leads to price adjustments. This study concludes that trading volume plays an important role in explaining international return and volatility transmissions. The examination concerning asymmetry reveals that the impact of the positive volume changes is larger on foreign stock market volatility than the negative changes. The fourth and the final essay documents number of regularities in the pattern of intraday return volatility, trading volume and bid-ask spreads. This study also reports a contemporaneous and positive relationship between the intraday return volatility, bid ask spread and unexpected trading volume. These results verify the role of trading volume and bid ask quotes as proxies for information arrival in producing contemporaneous and subsequent intraday return volatility. Moreover, asymmetric effect of trading volume on conditional volatility is also confirmed. Overall, this dissertation explores the role of information in explaining the intraday return and volatility dynamics in international stock markets. The process through which the information is incorporated in stock prices is central to all information-based models. The intraday data facilitates the investigation that how information gets incorporated into security prices as a result of the trading behavior of informed and uninformed traders. Thus high frequency data appears critical in enhancing our understanding of intraday behavior of various stock markets’ variables as it has important implications for market participants, regulators and academic researchers.