742 resultados para Hare
Resumo:
Blooms of Lyngbya majuscula have been reported with increasing frequency and severity in the last decade in Moreton Bay, Australia. A number of grazers have been observed feeding upon this toxic cyanobacterium. Differences in sequestration of toxic compounds from L. majuscula were investigated in two anaspideans, Stylocheilus striatus, Bursatella leachii, and the cephalaspidean Diniatys dentifer. Species fed a monospecific diet of L. majuscula had different toxin distribution in their tissues and excretions. A high concentration of lyngbyatoxin-a was observed in the body of S. striatus (3.94 mg/kg(-1)) compared to bodily secretions (ink 0.12 mg/kg- 1; fecal matter 0.56 mg/kg(-1); eggs 0.05 mg/kg(-1)). In contrast, B. leachii secreted greater concentrations of lyngbyatoxin-a (ink 5.41 mg/kg(-1); fecal matter 6.71 mg/kg(-1)) than that stored in the body (2.24 mg/kg(-1)). The major internal repository of lyngbyatoxin-a and debromoaplysiatoxin was the digestive gland for both S. striatus (6.31 +/- 0.31 mg/kg(-1)) and B. leachii (156.39 +/- 46.92 mg/kg(-1)). D. dentifer showed high variability in the distribution of sequestered compounds. Lyngbyatoxin-a was detected in the digestive gland (3.56 +/- 3.56 mg/kg(-1)) but not in the head and foot, while debromoaplysiatoxin was detected in the head and foot (133.73 +/- 129.82 mg/kg(-1)) but not in the digestive gland. The concentrations of sequestered secondary metabolites in these animals did not correspond to the concentrations found in L. majuscula used as food for these experiments, suggesting it may have been from previous dietary exposure. Trophic transfer of debromoaplysiatoxin from L. majuscula into S. striatus is well established; however, a lack of knowledge exists for other grazers. The high levels of secondary metabolites observed in both the anaspidean and the cephalapsidean species suggest that these toxins may bioaccumulate through marine food chains.
Resumo:
Rabbitfish Siganus fuscescens preferences for Lyngbya majuscula collected from three bloom locations in Moreton Bay, Queensland, Australia, were tested along with a range of local plant species in the laboratory. Consumption of L. majuscula by fish did not differ between wild and captive-bred fish (P = 0.152) but did differ between bloom location (P = 0.039). No relationship was found between consumption rates and lyngbyatoxin-a concentration (r(2) = 0.035, P = 0.814). No correlation existed between C : N and proportion of food consumed when all food types were analysed statistically, whereas a clear correlation was observed when L. majuscula was removed from the calculations. In simulated bloom conditions, fish avoided ingestion of L. majuscula by feeding through gaps in the L. majuscula coverage. Both wild and captive-bred S. fuscescens showed a distinct feeding pattern in 10 day no-choice feeding assays, with less L. majuscula being consumed than the preferred red alga Acanthophora spicifera. Lyngbya majuscula however, was consumed in equal quantities to A. spicifera by wild S. fuscescens when lyngbyatoxin-a was not detectable. Wild fish probably do not preferentially feed on L. majuscula when secondary metabolites are present and are not severely impacted by large L. majuscula blooms in Moreton Bay. Furthermore, poor feeding performance in both captive-bred and wild S. fuscescens suggests that they would exert little pressure as a top-down control agent of toxic L. majuscula blooms within Moreton Bay. (c) 2006 The Fisheries Society of the British Isles.
Resumo:
Trophodynamics of blooms of the toxic marine cyanobacterium Lyngkya majuscula were investigated to determine dietary specificity in two putative grazers: the opisthobranch molluscs, Stylocheilus striatus and Bursatella leachii. S. striatus is associated with L. majuscula blooms and is known to sequester L. majuscula metabolites. The dietary specificity and toxicodynamics of B. leachii in relation to L. majuscula is less well documented. In this study we found diet history had no significant effect upon dietary selectivity of S. striatus when offered a range of plant species. However, L. majuscula chemotype may alter S. striatus' selectivity for this cyanobacterium. Daily biomass increases between small and large size groups of both species were recorded in no-choice consumption trials using L. majuscula. Both S. striatus and B. leachii preferentially consumed L. majuscula containing lyngbyatoxin-a. Increase in mass over a 10-day period in B. leachii (915%) was significantly greater than S. striatus (150%), yet S. striatus consumed greater quantities of L. majuscula (g day(-1)) and thus had a lower conversion efficiency (0.038) than B. leachii (0.081) based on sea hare weight per gram of L. majuscula consumed day(-1). Our findings suggest that growth rates and conversion efficiencies may be influenced by sea hare maximum growth potential, acquisition of secondary metabolites or diet type. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
This study investigates the influence of mesograzer prior exposure to toxic metabolites on palatability of the marine cyanobacterium, Lyngbya majuscula. We examined the palatability of L. majuscula crude extract obtained from a bloom in Moreton Bay, South East Queensland, Australia, containing lyngbyatoxin-a (LTA) and debromoaplysiatoxin (DAT), to two groups: (1) mesograzers of L. majuscula from Guam where LTA and DAT production is rare; and (2) macro- and mesograzers found feeding on L. majuscula blooms in Moreton Bay where LTA and DAT are often prevalent secondary metabolites. Pair-wise feeding assays using artificial diets consisting of Ulva clathrata suspended in agar (control) or coated with Moreton Bay L. majuscula crude extracts (treatment) were used to determine palatability to a variety of consumers. In Guam, the amphipods, Parhyale hawaiensis and Cymadusa imbroglio; the majid crab Menaethius monoceros; and the urchin Echinometra mathaei were significantly deterred by the Moreton Bay crude extract. The sea hares, Stylocheilus striatus, from Guam were stimulated to feed by treatment food whereas S. striatus collected from Moreton Bay showed no discrimination between food types. In Moreton Bay, the cephalaspidean Diniatys dentifer and wild caught rabbitfish Siganus fuscescens were significantly deterred by the crude extract. However, captive-bred S. fuscescens with no known experience with L. majuscula did not clearly discriminate between food choices. Lyngbya majuscula crude extract deters feeding by most mesograzers regardless of prior contact or association with blooms.