936 resultados para Halbach Array
Resumo:
Major funding was provided by the UK Natural Environment Research Council (NERC) under grant NE/I028017/1 and partially supported by Boğaziçi University Research Fund (BAP) under grant 6922. We would like to thank all the project members from the University of Leeds, Boğaziçi University, Kandilli Observatory, Aberdeen University and Sakarya University. I would also like to thank Prof. Ali Pinar and Dr. Kıvanç Kekovalı for their valuable comments. Some of the figures were generated by GMT software (Wessel and Smith, 1995).
Resumo:
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy-corrected for geometrical effects-is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.
Resumo:
In this article we present a numerical study of the collective dynamics in a population of coupled semiconductor lasers with a saturable absorber, operating in the excitable regime under the action of additive noise. We demonstrate that temporal and intensity synchronization takes place in a broad region of the parameter space and for various array sizes. The synchronization is robust and occurs even for a set of nonidentical coupled lasers. The cooperative nature of the system results in a self-organization process which enhances the coherence of the single element of the population too and can have broad impact for detection purposes, for building all-optical simulators of neural networks and in the field of photonics-based computation.
Resumo:
The genomes of many strains of baker’s yeast, Saccharomyces cerevisiae, contain multiple repeats of the copper-binding protein Cup1. Cup1 is a member of the metallothionein family, and is found in a tandem array on chromosome VIII. In this thesis, I describe studies that characterized these tandem arrays and their mechanism of formation across diverse strains of yeast. I show that CUP1 arrays are an illuminating model system for observing recombination in eukaryotes, and describe insights derived from these observations.
In our first study, we analyzed 101 natural isolates of S. cerevisiae in order to examine the diversity of CUP1-containing repeats across different strains. We identified five distinct classes of repeats that contain CUP1. We also showed that some strains have only a single copy of CUP1. By comparing the sequences of all the strains, we were able to elucidate the mechanism of formation of the CUP1 tandem arrays, which involved unequal non-homologous recombination events starting from a strain that had only a single CUP1 gene. Our observation of CUP1 repeat formation allows more general insights about the formation of tandem repeats from single-copy genes in eukaryotes, which is one of the most important mechanisms by which organisms evolve.
In our second study, we delved deeper into our mechanistic investigations by measuring the relative rates of inter-homolog and intra-/inter-sister chromatid recombination in CUP1 tandem arrays. We used a diploid strain that is heterozygous both for insertion of a selectable marker (URA3) inside the tandem array, and also for markers at either end of the array. The intra-/inter-sister chromatid recombination rate turned out to be more than ten-fold greater than the inter-homolog rate. Moreover, we found that loss of the proteins Rad51 and Rad52, which are required for most inter-homolog recombination, did not greatly reduce recombination in the CUP1 tandem repeats. Additionally, we investigated the effects of elevated copper levels on the rate of each type of recombination at the CUP1 locus. Both types of recombination are increased at high concentrations of copper (as is known to be the case for CUP1 transcription). Furthermore, the inter-homolog recombination rate at the CUP1 locus is higher than the average over the genome during mitosis, but is lower than the average during meiosis.
The research described in Chapter 2 is published in 2014.
Resumo:
This paper presents the design and results of a dual-band antenna array integrated with bandpass filters for WLAN applications. The array is fed with a single 50 Ω port and consists of two radiating elements; thereby having a 1x2 array structure. The two bands of the antenna array correspond to the two WLAN bands of 2.4 GHz and 5.8 GHz. A standalone array has first been designed. Other than the two fundamental resonant frequencies, the standalone array exhibits spurious harmonics at various other frequencies. For the suppression of these harmonics, the array has been integrated with two bandpass filters, centered at 2.4 GHz and 5.8 GHz. The resulting filtenna array was simulated, fabricated and measured. Obtained simulation and measurement results agree well with each other and have been presented to validate the accuracy of the proposed structure. Measured return loss of the structure shows dual-bands at 2.4 GHz and 5.8 GHz of more than 30 dB each and also a successful suppression of the spurious harmonics of the antenna array has been achieved. Radiation patterns have also been simulated and measured and both results shown. The gain and efficiency have also been presented; with the values being 6.7 dBi and 70% for the 2.4 GHz band and 7.4 dBi and 81% for the 5.8 GHz band respectively.
Resumo:
The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS® SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0 ± 0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates >90% when criteria of 0.5%/0.5 mm were used. Results using this novel phantom arrangement indicate that the RPM system is capable of accurately gating x-ray exposure during the delivery of a fixed-field treatment beam.
Resumo:
By modification of the classical retrodirective arrays (RDAs) architecture a directional modulation (DM) transmitter can be realized without the need for synthesis. Importantly, through analytical analysis and exemplar simulations, it is proved that, besides the conventional DM application scenario, i.e., secure transmission to one legitimate receiver located along one spatial direction in free space, the proposed synthesis-free DM transmitter should also perform well for systems where there are more than one legitimate receivers positioned along different directions in free space, and where one or more legitimate receivers exist in a multipath environment. None of these have ever been achieved before using synthesis-free DM arrangements.
Resumo:
Deletion of the TP53 gene on chromosome 17p13.1 is the prognostic factor associated with the shortest survival in CLL. We used array-based comparative genomic hybridisation (arrayCGH) to identify additional DNA copy number changes in peripheral blood samples from 74 LRF CLL4 trial patients, 37 with >or=5% and 37 without TP53-deleted cells. ArrayCGH reliably detected deletions on 17p, including the TP53 locus, in cases with >or=50%TP53-deleted cells detected by fluorescence in situ hybridisation, plus seven additional cases with deleted regions on 17p excluding TP53. Losses on chromosomal regions 18p and/or 20p were found exclusively in cases with >or=5%TP53-deleted cells (por=5%TP53-deleted cases (p=0.02). In particular, amplification of 2p and deletion of 6q were both more frequent. Cases with >20%TP53-deleted cells had the worst prognosis in the LRF CLL4 trial.
Resumo:
Ti nanowire arrays vertically standing on Ti foam prepared by a facile corrosion method were used as self-supported Li-O2 battery cathodes. The batteries exhibited enhanced durability at high rate current densities (e.g. cycling 640 times at 5 A g-1).
Resumo:
In this paper a new method of establishing secret keys for wireless communications is proposed. A retrodirective array (RDA) that is configured to receive and re-transmit at different frequencies is utilized as a relay node. Specifically the analogue RDA is able to respond in ‘real-time’, reducing the required number of time slots for key establishment to two, compared with at least three in previous relay key generation schemes. More importantly, in the proposed architecture equivalent reciprocal wireless channels between legitimate keying nodes can be randomly updated within one channel coherence time period, leading to greatly increased key generation rates (KGRs) in slow fading environment. The secrecy performance of this RDA assisted key generation system is evaluated and it is shown that it outperforms previous relay key generation systems.
Resumo:
PURPOSE:
To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo.
METHODS:
Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film.
RESULTS:
Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion.
CONCLUSIONS:
For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.
Resumo:
A novel retrodirective array (RDA) architecture is proposed which utilises a special case spectral signature embedded within the data payload as pilot signals. With the help of a pair of phase-locked-loop (PLL) based phase conjugators (PCs) the RDA’s response to other unwanted and/or unfriendly interrogating signals can be disabled, leading to enhanced secrecy performance directly in the wireless physical layer. The effectiveness of the proposed RDA system is experimentally demonstrated.