951 resultados para HIGH-POWER APPLICATIONS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this brief is to present an original design methodology that permits implementing latch-up-free smart power circuits on a very simple, cost-effective technology. The basic concept used for this purpose is letting float the wells of the MOS transistors most susceptible to initiate latch-up.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MR structural T1-weighted imaging using high field systems (>3T) is severely hampered by the existing large transmit field inhomogeneities. New sequences have been developed to better cope with such nuisances. In this work we show the potential of a recently proposed sequence, the MP2RAGE, to obtain improved grey white matter contrast with respect to conventional T1-w protocols, allowing for a better visualization of thalamic nuclei and different white matter bundles in the brain stem. Furthermore, the possibility to obtain high spatial resolution (0.65 mm isotropic) R1 maps fully independent of the transmit field inhomogeneities in clinical acceptable time is demonstrated. In this high resolution R1 maps it was possible to clearly observe varying properties of cortical grey matter throughout the cortex and observe different hippocampus fields with variations of intensity that correlate with known myelin concentration variations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Self-measurement of blood pressure (SMBP) is increasingly used to assess blood pressure outside the medical setting. A prerequisite for the wide use of SMBP is the availability of validated devices providing reliable readings when they are handled by patients. This is the case today with a number of fully automated oscillometric apparatuses. A major advantage of SMBP is the great number of readings, which is linked with high reproducibility. Given these advantages, one of the major indications for SMBP is the need for evaluation of antihypertensive treatment, either for individual patients in everyday practice or in clinical trials intended to characterize the effects of blood-pressure-lowering medications. In fact, SMBP is particularly helpful for evaluating resistant hypertension and detecting white-coat effect in patients exhibiting high office blood pressure under antihypertensive therapy. SMBP might also motivate the patient and improve his or her adherence to long-term treatment. Moreover, SMBP can be used as a sensitive technique for evaluating the effect of antihypertensive drugs in clinical trials; it increases the power of comparative trials, allowing one to study fewer patients or to detect smaller differences in blood pressure than would be possible with the office measurement. Therefore, SMBP can be regarded as a valuable technique for the follow-up of treated patients as well as for the assessment of antihypertensive drugs in clinical trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Selostus: Aikaisen ja tavanomaisen kasvunsäädekäsittelyn vaikutus kevätviljojen kasvustoon ja satoon

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tehoelektoniikkalaitteella tarkoitetaan ohjaus- ja säätöjärjestelmää, jolla sähköä muokataan saatavilla olevasta muodosta haluttuun uuteen muotoon ja samalla hallitaan sähköisen tehon virtausta lähteestä käyttökohteeseen. Tämä siis eroaa signaalielektroniikasta, jossa sähköllä tyypillisesti siirretään tietoa hyödyntäen eri tiloja. Tehoelektroniikkalaitteita vertailtaessa katsotaan yleensä niiden luotettavuutta, kokoa, tehokkuutta, säätötarkkuutta ja tietysti hintaa. Tyypillisiä tehoelektroniikkalaitteita ovat taajuudenmuuttajat, UPS (Uninterruptible Power Supply) -laitteet, hitsauskoneet, induktiokuumentimet sekä erilaiset teholähteet. Perinteisesti näiden laitteiden ohjaus toteutetaan käyttäen mikroprosessoreja, ASIC- (Application Specific Integrated Circuit) tai IC (Intergrated Circuit) -piirejä sekä analogisia säätimiä. Tässä tutkimuksessa on analysoitu FPGA (Field Programmable Gate Array) -piirien soveltuvuutta tehoelektroniikan ohjaukseen. FPGA-piirien rakenne muodostuu erilaisista loogisista elementeistä ja niiden välisistä yhdysjohdoista.Loogiset elementit ovat porttipiirejä ja kiikkuja. Yhdysjohdot ja loogiset elementit ovat piirissä kiinteitä eikä koostumusta tai lukumäärää voi jälkikäteen muuttaa. Ohjelmoitavuus syntyy elementtien välisistä liitännöistä. Piirissä on lukuisia, jopa miljoonia kytkimiä, joiden asento voidaan asettaa. Siten piirin peruselementeistä voidaan muodostaa lukematon määrä erilaisia toiminnallisia kokonaisuuksia. FPGA-piirejä on pitkään käytetty kommunikointialan tuotteissa ja siksi niiden kehitys on viime vuosina ollut nopeaa. Samalla hinnat ovat pudonneet. Tästä johtuen FPGA-piiristä on tullut kiinnostava vaihtoehto myös tehoelektroniikkalaitteiden ohjaukseen. Väitöstyössä FPGA-piirien käytön soveltuvuutta on tutkittu käyttäen kahta vaativaa ja erilaista käytännön tehoelektroniikkalaitetta: taajuudenmuuttajaa ja hitsauskonetta. Molempiin testikohteisiin rakennettiin alan suomalaisten teollisuusyritysten kanssa soveltuvat prototyypit,joiden ohjauselektroniikka muutettiin FPGA-pohjaiseksi. Lisäksi kehitettiin tätä uutta tekniikkaa hyödyntävät uudentyyppiset ohjausmenetelmät. Prototyyppien toimivuutta verrattiin vastaaviin perinteisillä menetelmillä ohjattuihin kaupallisiin tuotteisiin ja havaittiin FPGA-piirien mahdollistaman rinnakkaisen laskennantuomat edut molempien tehoelektroniikkalaitteiden toimivuudessa. Työssä on myösesitetty uusia menetelmiä ja työkaluja FPGA-pohjaisen säätöjärjestelmän kehitykseen ja testaukseen. Esitetyillä menetelmillä tuotteiden kehitys saadaan mahdollisimman nopeaksi ja tehokkaaksi. Lisäksi työssä on kehitetty FPGA:n sisäinen ohjaus- ja kommunikointiväylärakenne, joka palvelee tehoelektroniikkalaitteiden ohjaussovelluksia. Uusi kommunikointirakenne edistää lisäksi jo tehtyjen osajärjestelmien uudelleen käytettävyyttä tulevissa sovelluksissa ja tuotesukupolvissa.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the latest few years the need for new motor types has grown, since both high efficiency and an accurate dynamic performance are demanded in industrial applications. For this reason, new effective control systems such as direct torque control (DTC) have been developed. Permanent magnet synchronous motors (PMSM) are well suitable for new adjustable speed AC inverter drives, because their efficiency and power factor are not depending on the pole pair number and speed to the same extent as it is the case in induction motors. Therefore, an induction motor (IM) with a mechanical gearbox can often be replaced with a direct PM motor drive. Space as well as costs will be saved, because the efficiency increases and the cost of maintenance decreases as well. This thesis deals with design criterion, analytical calculation and analysis of the permanent magnet synchronous motor for both sinusoidal air-gap flux density and rectangular air-gapflux density. It is examined how the air-gap flux, flux densities, inductances and torque can be estimated analytically for salient pole and non-salient pole motors. It has been sought by means of analytical calculations for the ultimate construction for machines rotating at relative low 300 rpm to 600 rpm speeds, which are suitable speeds e.g. in Pulp&Paper industry. The calculations are verified by using Finite Element calculations and by measuring of prototype motor. The prototype motor is a 45 kW, 600 rpm PMSM with buried V-magnets, which is a very appropriate construction for high torque motors with a high performance. With the purposebuilt prototype machine it is possible not only to verify the analytical calculations but also to show whether the 600 rpm PMSM can replace the 1500 rpm IM with a gear. It can also be tested if the outer dimensions of the PMSM may be the same as for the IM and if the PMSM in this case can produce a 2.5 fold torque, in consequence of which it may be possible to achieve the same power. The thesis also considers the question how to design a permanent magnet synchronous motor for relatively low speed applications that require a high motor torqueand efficiency as well as bearable costs of permanent magnet materials. It is shown how a selection of different parameters affects the motor properties. Key words: Permanent magnet synchronous motor, PMSM, surface magnets, buried magnets

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I-100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to evaluate different spray nozzles for land applications in high speed on the coverage and deposit in soybean plants pulverization. It was evaluated the AXI 110 04 plane jet nozzles operated at speed of 4.17m.s-1 (control), the grey APE and the AXI 110 08 plane jets, and the TD HiSpeed 110 06 and AXI TWIN 120 06 twin jets, at speed of 9.72m.s-1. The application volume was fixed in 120L ha-1. The application efficiency was evaluated by two different methods: analysis of the coverage area using fluorescent pigment and UV light and analysis of deposits through the recovery and quantification of FD&C N°1 brilliant blue marker by spectrophotometry. Both analyses were done in samples collected from top, middle and bottom parts of the plants. The spray nozzles showed differences in coverage and deposit pattern, so in the top part, the coverage was increased with smaller drops and the deposits were increased with medium drops. In the other parts of the plants, there were no statistical differences between the treatments for both coverage and deposits. The displacement speed did not influence the application efficiency for nozzles with the same drop pattern, and the obtained spray coverage and deposits at the medium and bottom parts of the plants were less than 50% of that found at the top of the soybean plants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Multiprocessing is a promising solution to meet the requirements of near future applications. To get full benefit from parallel processing, a manycore system needs efficient, on-chip communication architecture. Networkon- Chip (NoC) is a general purpose communication concept that offers highthroughput, reduced power consumption, and keeps complexity in check by a regular composition of basic building blocks. This thesis presents power efficient communication approaches for networked many-core systems. We address a range of issues being important for designing power-efficient manycore systems at two different levels: the network-level and the router-level. From the network-level point of view, exploiting state-of-the-art concepts such as Globally Asynchronous Locally Synchronous (GALS), Voltage/ Frequency Island (VFI), and 3D Networks-on-Chip approaches may be a solution to the excessive power consumption demanded by today’s and future many-core systems. To this end, a low-cost 3D NoC architecture, based on high-speed GALS-based vertical channels, is proposed to mitigate high peak temperatures, power densities, and area footprints of vertical interconnects in 3D ICs. To further exploit the beneficial feature of a negligible inter-layer distance of 3D ICs, we propose a novel hybridization scheme for inter-layer communication. In addition, an efficient adaptive routing algorithm is presented which enables congestion-aware and reliable communication for the hybridized NoC architecture. An integrated monitoring and management platform on top of this architecture is also developed in order to implement more scalable power optimization techniques. From the router-level perspective, four design styles for implementing power-efficient reconfigurable interfaces in VFI-based NoC systems are proposed. To enhance the utilization of virtual channel buffers and to manage their power consumption, a partial virtual channel sharing method for NoC routers is devised and implemented. Extensive experiments with synthetic and real benchmarks show significant power savings and mitigated hotspots with similar performance compared to latest NoC architectures. The thesis concludes that careful codesigned elements from different network levels enable considerable power savings for many-core systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The general trend towards increasing e ciency and energy density drives the industry to high-speed technologies. Active Magnetic Bearings (AMBs) are one of the technologies that allow contactless support of a rotating body. Theoretically, there are no limitations on the rotational speed. The absence of friction, low maintenance cost, micrometer precision, and programmable sti ness have made AMBs a viable choice for highdemanding applications. Along with the advances in power electronics, such as signi cantly improved reliability and cost, AMB systems have gained a wide adoption in the industry. The AMB system is a complex, open-loop unstable system with multiple inputs and outputs. For normal operation, such a system requires a feedback control. To meet the high demands for performance and robustness, model-based control techniques should be applied. These techniques require an accurate plant model description and uncertainty estimations. The advanced control methods require more e ort at the commissioning stage. In this work, a methodology is developed for an automatic commissioning of a subcritical, rigid gas blower machine. The commissioning process includes open-loop tuning of separate parts such as sensors and actuators. The next step is to apply a system identi cation procedure to obtain a model for the controller synthesis. Finally, a robust model-based controller is synthesized and experimentally evaluated in the full operating range of the system. The commissioning procedure is developed by applying only the system components available and a priori knowledge without any additional hardware. Thus, the work provides an intelligent system with a self-diagnostics feature and an automatic commissioning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transportation of fluids is one of the most common and energy intensive processes in the industrial and HVAC sectors. Pumping systems are frequently subject to engineering malpractice when dimensioned, which can lead to poor operational efficiency. Moreover, pump monitoring requires dedicated measuring equipment, which imply costly investments. Inefficient pump operation and improper maintenance can increase energy costs substantially and even lead to pump failure. A centrifugal pump is commonly driven by an induction motor. Driving the induction motor with a frequency converter can diminish energy consumption in pump drives and provide better control of a process. In addition, induction machine signals can also be estimated by modern frequency converters, dispensing with the use of sensors. If the estimates are accurate enough, a pump can be modelled and integrated into the frequency converter control scheme. This can open the possibility of joint motor and pump monitoring and diagnostics, thereby allowing the detection of reliability-reducing operating states that can lead to additional maintenance costs. The goal of this work is to study the accuracy of rotational speed, torque and shaft power estimates calculated by a frequency converter. Laboratory tests were performed in order to observe estimate behaviour in both steady-state and transient operation. An induction machine driven by a vector-controlled frequency converter, coupled with another induction machine acting as load was used in the tests. The estimated quantities were obtained through the frequency converter’s Trend Recorder software. A high-precision, HBM T12 torque-speed transducer was used to measure the actual values of the aforementioned variables. The effect of the flux optimization energy saving feature on the estimate quality was also studied. A processing function was developed in MATLAB for comparison of the obtained data. The obtained results confirm the suitability of this particular converter to provide accurate enough estimates for pumping applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This doctoral thesis presents a study on the design of tooth-coil permanent magnet synchronous machines. The electromagnetic properties of concentrated non-overlapping winding permanent magnet synchronous machines, or simply tooth-coil permanent magnet synchronous machines (TC-PMSMs), are studied in details. It is shown that current linkage harmonics play the deterministic role in the behavior of this type of machines. Important contributions are presented as regards of calculation of parameters of TC-PMSMs,particularly the estimation of inductances. The current linkage harmonics essentially define the air-gap harmonic leakage inductance, rotor losses and localized temporal inductance variation. It is proven by FEM analysis that inductance variation caused by the local temporal harmonic saturation results in considerable torque ripple, and can influence on sensorless control capabilities. Example case studies an integrated application of TC-IPMSMs in hybrid off-highway working vehicles. A methodology for increasing the efficiency of working vehicles is introduced. It comprises several approaches – hybridization, working operations optimization, component optimization and integration. As a result of component optimization and integration, a novel integrated electro-hydraulic energy converter (IEHEC) for off-highway working vehicles is designed. The IEHEC can considerably increase the operational efficiency of a hybrid working vehicle. The energy converter consists of an axial-piston hydraulic machine and an integrated TCIPMSM being built on the same shaft. The compact assembly of the electrical and hydraulic machines enhances the ability to find applications for such a device in the mobile environment of working vehicles.Usage of hydraulic fluid, typically used in working actuators, enables direct-immersion oil cooling of designed electrical machine, and further increases the torque- and power- densities of the whole device.