726 resultados para HERMITE POLYNOMIALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Михаил Константинов, Весела Пашева, Петко Петков - Разгледани са някои числени проблеми при използването на компютърната система MATLAB в учебната дейност: пресмятане на тригонометрични функции, повдигане на матрица на степен, спектрален анализ на целочислени матрици от нисък ред и пресмятане на корените на алгебрични уравнения. Причините за възникналите числени трудности могат да се обяснят с особеностите на използваната двоичната аритметика с плаваща точка.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1900 E. B. Van Vleck proposed a very efficient method to compute the Sturm sequence of a polynomial p (x) ∈ Z[x] by triangularizing one of Sylvester’s matrices of p (x) and its derivative p′(x). That method works fine only for the case of complete sequences provided no pivots take place. In 1917, A. J. Pell and R. L. Gordon pointed out this “weakness” in Van Vleck’s theorem, rectified it but did not extend his method, so that it also works in the cases of: (a) complete Sturm sequences with pivot, and (b) incomplete Sturm sequences. Despite its importance, the Pell-Gordon Theorem for polynomials in Q[x] has been totally forgotten and, to our knowledge, it is referenced by us for the first time in the literature. In this paper we go over Van Vleck’s theorem and method, modify slightly the formula of the Pell-Gordon Theorem and present a general triangularization method, called the VanVleck-Pell-Gordon method, that correctly computes in Z[x] polynomial Sturm sequences, both complete and incomplete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): F.2.1, G.1.5, I.1.2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): G.1.1, G.1.2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the polynomials f, g ∈ Z[x] of degrees n, m, respectively, with n > m, three new, and easy to understand methods — along with the more efficient variants of the last two of them — are presented for the computation of their subresultant polynomial remainder sequence (prs). All three methods evaluate a single determinant (subresultant) of an appropriate sub-matrix of sylvester1, Sylvester’s widely known and used matrix of 1840 of dimension (m + n) × (m + n), in order to compute the correct sign of each polynomial in the sequence and — except for the second method — to force its coefficients to become subresultants. Of interest is the fact that only the first method uses pseudo remainders. The second method uses regular remainders and performs operations in Q[x], whereas the third one triangularizes sylvester2, Sylvester’s little known and hardly ever used matrix of 1853 of dimension 2n × 2n. All methods mentioned in this paper (along with their supporting functions) have been implemented in Sympy and can be downloaded from the link http://inf-server.inf.uth.gr/~akritas/publications/subresultants.py

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 42A05. Secondary: 42A82, 11N05.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30C10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 33A65, 33C20.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MSC 2010: 41A10, 41A15, 41A25, 41A36

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MSC 2010: 30C10

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 11D09, 11A55, 11C08, 11R11, 11R29; Secondary: 11R65, 11S40; 11R09.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 15A29.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: 33C45, 40G05.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.