960 resultados para Gibbs phenomenon
Resumo:
The addition of surface tension to the classical Stefan problem for melting a sphere causes the solution to blow up at a finite time before complete melting takes place. This singular behaviour is characterised by the speed of the solid-melt interface and the flux of heat at the interface both becoming unbounded in the blow-up limit. In this paper, we use numerical simulation for a particular energy-conserving one-phase version of the problem to show that kinetic undercooling regularises this blow-up, so that the model with both surface tension and kinetic undercooling has solutions that are regular right up to complete melting. By examining the regime in which the dimensionless kinetic undercooling parameter is small, our results demonstrate how physically realistic solutions to this Stefan problem are consistent with observations of abrupt melting of nanoscaled particles.
Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces
Resumo:
Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon has gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150µm compared to particles <150µm. As particle size reduces below 150µm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption.
Resumo:
This research project frames an emerging field – fashion curation – through a theoretical, historical, and practical enquiry. Recent decades have seen fashion curation grow rapidly as a form of praxis and an area of academic attention, predominantly in museums and universities. Within this context, two major models for conceptualising the role of the fashion curator have emerged: the institutional and the independent curator. This project proposes and applies a third model: the adjunct fashion curator. In developing this model my project seeks to move the growing dialogue around fashion curation away from exclusively focusing on the museum. By proposing a third curatorial model for fashion, this research draws on the past of fashion display and exhibition for its context, while simultaneously exploring the adjunct model through my curatorial practice. The impact of sites of display, the role of gender, and the relationship between art and fashion are explored as pivotal themes in the development of fashion curation and thus provide contextual grounding for the proposal of the adjunct curatorial model. Alongside a theoretical and historical account of fashion curation, I conduct a practice-led inquiry that explores these themes through five exhibition projects and one photographic series. I argue that the introduction and application of the adjunct model enables curatorial practitioners to sensitively work around the dominant museum model, and circumvent the divide between institutional and independent curation. Introducing the adjunct model allows the curator to develop personalised narratives relating to the experience of fashion and clothing as an exhibited phenomenon in a variety of institutional and non-institutional sites. Hence this research project contributes to a developing field by proposing a valuable and nuanced model for fashion curation.
Resumo:
The effectiveness of structural elements employed for stormwater mitigation such as bioretention basins and constructed wetlands depend on the compatibility between their design specifications and actual stormwater quality and quantity characteristics. These structural elements are commonly designed to accommodate the initial portion of runoff considering the occurrence of first flush. Therefore, the effectiveness of stormwater quality treatment primarily depends on the in-depth knowledge of the first flush phenomenon and the ability to provide appropriate treatment. The current scientific knowledge relating to first flush is limited primarily due to research investigations being undertaken based on lumped rainfall and runoff parameters. This paper presents the outcomes of an in-depth study undertaken of the first flush phenomenon using a set of indicators which are not only innovative, but is also able to accurately represent the characteristics of the different sectors in a runoff hydrograph. The analysis undertaken confirmed that pollutant wash-off during the initial 10% of runoff volume was critical for the occurrence of first flush. Typically first flush was found to last up to 40% of the runoff volume. The study outcomes provide new knowledge to enhance the effectiveness of structural stormwater treatment measures.
Resumo:
Passenger flow studies in airport terminals have shown consistent statistical relationships between airport spatial layout and pedestrian movement, facilitating prediction of movement from terminal designs. However, these studies are done at an aggregate level and do not incorporate how individual passengers make decisions at a microscopic level. Therefore, they do not explain the formation of complex movement flows. In addition, existing models mostly focus on standard airport processing procedures such as immigration and security, but seldom consider discretionary activities of passengers, and thus are not able to truly describe the full range of passenger flows within airport terminals. As the route-choice decision-making of passengers involves many uncertain factors within the airport terminals, the mechanisms to fulfill the capacity of managing the route-choice have proven difficult to acquire and quantify. Could the study of cognitive factors of passengers (i.e. human mental preferences of deciding which on-airport facility to use) be useful to tackle these issues? Assuming the movement in virtual simulated environments can be analogous to movement in real environments, passenger behaviour dynamics can be similar to those generated in virtual experiments. Three levels of dynamics have been devised for motion control: the localised field, tactical level, and strategic level. A localised field refers to basic motion capabilities, such as walking speed, direction and avoidance of obstacles. The other two fields represent cognitive route-choice decision-making. This research views passenger flow problems via a "bottom-up approach", regarding individual passengers as independent intelligent agents who can behave autonomously and are able to interact with others and the ambient environment. In this regard, passenger flow formation becomes an emergent phenomenon of large numbers of passengers interacting with others. In the thesis, first, the passenger flow in airport terminals was investigated. Discretionary activities of passengers were integrated with standard processing procedures in the research. The localised field for passenger motion dynamics was constructed by a devised force-based model. Next, advanced traits of passengers (such as their desire to shop, their comfort with technology and their willingness to ask for assistance) were formulated to facilitate tactical route-choice decision-making. The traits consist of quantified measures of mental preferences of passengers when they travel through airport terminals. Each category of the traits indicates a decision which passengers may take. They were inferred through a Bayesian network model by analysing the probabilities based on currently available data. Route-choice decision-making was finalised by calculating corresponding utility results based on those probabilities observed. Three sorts of simulation outcomes were generated: namely, queuing length before checkpoints, average dwell time of passengers at service facilities, and instantaneous space utilisation. Queuing length reflects the number of passengers who are in a queue. Long queues no doubt cause significant delay in processing procedures. The dwell time of each passenger agent at the service facilities were recorded. The overall dwell time of passenger agents at typical facility areas were analysed so as to demonstrate portions of utilisation in the temporal aspect. For the spatial aspect, the number of passenger agents who were dwelling within specific terminal areas can be used to estimate service rates. All outcomes demonstrated specific results by typical simulated passenger flows. They directly reflect terminal capacity. The simulation results strongly suggest that integrating discretionary activities of passengers makes the passenger flows more intuitive, observing probabilities of mental preferences by inferring advanced traits make up an approach capable of carrying out tactical route-choice decision-making. On the whole, the research studied passenger flows in airport terminals by an agent-based model, which investigated individual characteristics of passengers and their impact on psychological route-choice decisions of passengers. Finally, intuitive passenger flows in airport terminals were able to be realised in simulation.
Resumo:
Nanowires (NWs) have attracted appealing and broad application owing to their remarkable mechanical, optical, electrical, thermal and other properties. To unlock the revolutionary characteristics of NWs, a considerable body of experimental and theoretical work has been conducted. However, due to the extremely small dimensions of NWs, the application and manipulation of the in situ experiments involve inherent complexities and huge challenges. For the same reason, the presence of defects appears as one of the most dominant factors in determining their properties. Hence, based on the experiments' deficiency and the necessity of investigating different defects' influence, the numerical simulation or modelling becomes increasingly important in the area of characterizing the properties of NWs. It has been noted that, despite the number of numerical studies of NWs, significant work still lies ahead in terms of problem formulation, interpretation of results, identification and delineation of deformation mechanisms, and constitutive characterization of behaviour. Therefore, the primary aim of this study was to characterize both perfect and defected metal NWs. Large-scale molecular dynamics (MD) simulations were utilized to assess the mechanical properties and deformation mechanisms of different NWs under diverse loading conditions including tension, compression, bending, vibration and torsion. The target samples include different FCC metal NWs (e.g., Cu, Ag, Au NWs), which were either in a perfect crystal structure or constructed with different defects (e.g. pre-existing surface/internal defects, grain/twin boundaries). It has been found from the tensile deformation that Young's modulus was insensitive to different styles of pre-existing defects, whereas the yield strength showed considerable reduction. The deformation mechanisms were found to be greatly influenced by the presence of defects, i.e., different defects acted in the role of dislocation sources, and many affluent deformation mechanisms had been triggered. Similar conclusions were also obtained from the compressive deformation, i.e., Young's modulus was insensitive to different defects, but the critical stress showed evident reduction. Results from the bending deformation revealed that the current modified beam models with the considerations of surface effect, or both surface effect and axial extension effect were still experiencing certain inaccuracy, especially for the NW with ultra small cross-sectional size. Additionally, the flexural rigidity of the NW was found to be insensitive to different pre-existing defects, while the yield strength showed an evident decrease. For the resonance study, the first-order natural frequency of the NW with pre-existing surface defects was almost the same as that from the perfect NW, whereas a lower first-order natural frequency and a significantly degraded quality factor was observed for NWs with grain boundaries. Most importantly, the <110> FCC NWs were found to exhibit a novel beat phenomenon driven by a single actuation, which was resulted from the asymmetry in the lattice spacing in the (110) plane of the NW cross-section, and expected to exert crucial impacts on the in situ nanomechanical measurements. In particular, <110> Ag NWs with rhombic, truncated rhombic, and triangular cross-sections were found to naturally possess two first-mode natural frequencies, which were envisioned with applications in NEMS that could operate in a non-planar regime. The torsion results revealed that the torsional rigidity of the NW was insensitive to the presence of pre-existing defects and twin boundaries, but received evident reduction due to grain boundaries. Meanwhile, the critical angle decreased considerably for defected NWs. This study has provided a comprehensive and deep investigation on the mechanical properties and deformation mechanisms of perfect and defected NWs, which will greatly extend and enhance the existing knowledge and understanding of the properties/performance of NWs, and eventually benefit the realization of their full potential applications. All delineated MD models and theoretical analysis techniques that were established for the target NWs in this research are also applicable to future studies on other kinds of NWs. It has been suggested that MD simulation is an effective and excellent tool, not only for the characterization of the properties of NWs, but also for the prediction of novel or unexpected properties.
Resumo:
Electrostatic discharges have been identified as the most likely cause in a number of incidents of fire and explosion with unexplained ignitions. The lack of data and suitable models for this ignition mechanism creates a void in the analysis to quantify the importance of static electricity as a credible ignition mechanism. Quantifiable hazard analysis of the risk of ignition by static discharge cannot, therefore, be entirely carried out with our current understanding of this phenomenon. The study of electrostatics has been ongoing for a long time. However, it was not until the wide spread use of electronics that research was developed for the protection of electronics from electrostatic discharges. Current experimental models for electrostatic discharge developed for intrinsic safety with electronics are inadequate for ignition analysis and typically are not supported by theoretical analysis. A preliminary simulation and experiment with low voltage was designed to investigate the characteristics of energy dissipation and provided a basis for a high voltage investigation. It was seen that for a low voltage the discharge energy represents about 10% of the initial capacitive energy available and that the energy dissipation was within 10 ns of the initial discharge. The potential difference is greatest at the initial break down when the largest amount of the energy is dissipated. The discharge pathway is then established and minimal energy is dissipated as energy dissipation becomes greatly influenced by other components and stray resistance in the discharge circuit. From the initial low voltage simulation work, the importance of the energy dissipation and the characteristic of the discharge were determined. After the preliminary low voltage work was completed, a high voltage discharge experiment was designed and fabricated. Voltage and current measurement were recorded on the discharge circuit allowing the discharge characteristic to be recorded and energy dissipation in the discharge circuit calculated. Discharge energy calculations show consistency with the low voltage work relating to discharge energy with about 30-40% of the total initial capacitive energy being discharged in the resulting high voltage arc. After the system was characterised and operation validated, high voltage ignition energy measurements were conducted on a solution of n-Pentane evaporating in a 250 cm3 chamber. A series of ignition experiments were conducted to determine the minimum ignition energy of n-Pentane. The data from the ignition work was analysed with standard statistical regression methods for tests that return binary (yes/no) data and found to be in agreement with recent publications. The research demonstrates that energy dissipation is heavily dependent on the circuit configuration and most especially by the discharge circuit's capacitance and resistance. The analysis established a discharge profile for the discharges studied and validates the application of this methodology for further research into different materials and atmospheres; by systematically looking at discharge profiles of test materials with various parameters (e.g., capacitance, inductance, and resistance). Systematic experiments looking at the discharge characteristics of the spark will also help understand the way energy is dissipated in an electrostatic discharge enabling a better understanding of the ignition characteristics of materials in terms of energy and the dissipation of that energy in an electrostatic discharge.
Resumo:
Postnatal depression (PND) is a significant global health issue, which not only impacts maternal wellbeing, but also infant development and family structures. Mental health disorders represent approximately 14% of global burden of disease and disability, including low and middle-income countries (LMIC), and PND has direct relevance to the Millennium Development Goals of reducing child mortality, improving maternal health, and creating global partnerships (United Nations, 2012; Guiseppe, Becker & Farmer, 2011). Emerging evidence suggests that PND in LMIC is similar to, or higher than in high-income countries (HIC), however, less than 10% of LMIC have prevalence data available (Fisher, Cabral de Mello, & Izutsu 2009; Lund et al., 2011). Whilst a small number of studies on maternal mental disorders have been published in Vietnam, only one specifically focuses on PND in a hospital-based sample. Also, community based mental health studies and information on mental health in rural areas of Vietnam is still scarce. The purpose of this study was to determine the prevalence of PND, and its associated social determinants in postnatal women in Thua Thien Hue Province, Central Vietnam. In order to identify social determinants relevant to the Central Vietnamese context, two qualitative studies and one community survey were undertaken. Associations between maternal mental health and infant health outcomes were also explored. The study was comprised of three phases. Firstly, iterative, qualitative interviews with Vietnamese health professionals (n = 17) and postpartum women (n = 15) were conducted and analysed using Kleinman's theory of explanatory models to identify narratives surrounding PND in the Vietnamese context (Kleinman, 1978). Secondly, a participatory concept mapping exercise was undertaken with two groups of health professionals (n = 12) to explore perceived risk and protective factors for postnatal mental health. Qualitative phases of the research elucidated narratives surrounding maternal mental health in the Vietnamese context such as son preference, use of traditional medicines, and the popularity of confinement practices such as having one to three months of complete rest. The qualitative research also revealed the construct of depression was not widely recognised. Rather, postpartum changes in mood were conceptualised as a loss of 'vital strength' following childbirth or 'disappointment'. Most women managed postpartum changes in mood within the family although some sought help from traditional medicine practitioners or biomedical doctors. Thirdly, a cross-sectional study of twelve randomly selected communes (six urban, six rural) in Thua Thien Hue Province was then conducted. Overall, 465 women with infants between 4 weeks and six months old participated, and 431 questionnaires were analysed. Women from urban (n = 216) and rural (n = 215) areas participated. All eligible women completed a structured interview about their health, basic demographics, and social circumstances. Maternal depression was measured using the Edinburgh Postnatal Depression Scale (EPDS) as a continuous variable. Multivariate generalised linear regression was conducted using PASW Statistics version 18.0 (2009). When using the conventional EPDS threshold for probable depression (EPDS score ~ 13) 18.1% (n = 78) of women were depressed (Gibson, McKenzie-McHarg, Shakespeare, Price & Gray, 2009). Interestingly, 20.4% of urban women (n = 44) had EPDS scores~ 13, which was a higher proportion than rural women, where 15.8% (n = 34) had EPDS scores ~ 13, although this difference was not statistically significant: t(429) = -0.689, p = 0.491. Whilst qualitative narratives identified infant gender and family composition, and traditional confinement practices as relevant to postnatal mood, these were not statistically significant in multivariate analysis. Rather, poverty, food security, being frightened of your husband or family members, experiences of intimate partner violence and breastfeeding difficulties had strong statistical associations. PND was also associated with having an infant with diarrhoea in the past two weeks, but not infant malnutrition or acute respiratory infections. This study is the first to explore maternal mental health in Central Vietnam, and provides further evidence that PND is a universally experienced phenomenon. The independent social risk factors of depressive symptoms identified such as poverty, food insecurity, experiences of violence and powerlessness, and relationship adversity points to women in a context of social suffering which is relevant throughout the world (Kleinman, Das & Lock, 1997). The culturally specific risk factors explored such as infant gender were not statistically significant when included in a multivariable model. However, they feature prominently in qualitative narratives surrounding PND in Vietnam, both in this study and previous literature. It appears that whilst infant gender may not be associated with PND per se, the reactions of close relatives to the gender of the baby can adversely affect maternal wellbeing. This study used a community based participatory research approach (CBPR) (Israel.2005). This approach encourages the knowledge produced to be used for public health interventions and workforce training in the community in which the research was conducted, and such work has commenced. These results suggest that packages of interventions for LMIC devised to address maternal mental health and infant wellbeing could be applied in Central Vietnam. Such interventions could include training lay workers to follow up postpartum women, and incorporating mental health screening and referral into primary maternal and child health care (Pate! et al., 2011; Rahman, Malik, Sikander & Roberts, 2008). Addressing the underlying social determinants of PND through poverty reduction and violence elimination programs is also recommended.
Resumo:
Discipline boundaries of science and technology education are inevitable. Often, such barriers are an obstacle to industry-based learning leading to preventable complexities. Industry-based learning is a complex scenario, rather than conventional learning, leading to the study of liquid learning, which is a timely concept to investigate learning without boundaries. Liquid learning consists of accountability, expectations and driven by outcomes with different learning choices. Liquid learning is a significant phenomenon requiring awareness in the science and technology education. This paper aims to discuss some practical issues when designing industry-based learning without boundaries. A case study approach is reviewed and presented.
Resumo:
Macroscopic Fundamental Diagram (MFD) has been proved to exist in large urban road and freeway networks by theoretic method and real data in cities. However hysteresis and scatters have also been found existed both on motorway network and urban road. This paper investigates how the incident variables affect the scatter and shape of the MFD using both the simulated data and the real data collected from the Pacific Motorway M3 in Brisbane, Australia. Three key components of incident are investigated based on the simulated data: incident location, incident duration time and traffic demand. Results based on the simulated data indicate that MFD shape is a property not only of the network itself but also of the incident characteristics variables. MFDs for three types of real incidents (crash, hazard and breakdown) are explored separately. The results based on the empirical data are consistent with the simulated results. The hysteresis phenomenon occurs on both the upstream and the downstream of the incident location, but for opposite hysteresis loops. Gradient of the MFD for the upstream is more than that for the downstream on the incident site, when traffic demand is off peak.
Resumo:
A people-to-people matching system (or a match-making system) refers to a system in which users join with the objective of meeting other users with the common need. Some real-world examples of these systems are employer-employee (in job search networks), mentor-student (in university social networks), consume-to-consumer (in marketplaces) and male-female (in an online dating network). The network underlying in these systems consists of two groups of users, and the relationships between users need to be captured for developing an efficient match-making system. Most of the existing studies utilize information either about each of the users in isolation or their interaction separately, and develop recommender systems using the one form of information only. It is imperative to understand the linkages among the users in the network and use them in developing a match-making system. This study utilizes several social network analysis methods such as graph theory, small world phenomenon, centrality analysis, density analysis to gain insight into the entities and their relationships present in this network. This paper also proposes a new type of graph called “attributed bipartite graph”. By using these analyses and the proposed type of graph, an efficient hybrid recommender system is developed which generates recommendation for new users as well as shows improvement in accuracy over the baseline methods.
Resumo:
The current state of knowledge in relation to first flush does not provide a clear understanding of the role of rainfall and catchment characteristics in influencing this phenomenon. This is attributed to the inconsistent findings from research studies due to the unsatisfactory selection of first flush indicators and how first flush is defined. The research study discussed in this thesis provides the outcomes of a comprehensive analysis on the influence of rainfall and catchment characteristics on first flush behaviour in residential catchments. Two sets of first flush indicators are introduced in this study. These indicators were selected such that they are representative in explaining in a systematic manner the characteristics associated with first flush. Stormwater samples and rainfall-runoff data were collected and recorded from stormwater monitoring stations established at three urban catchments at Coomera Waters, Gold Coast, Australia. In addition, historical data were also used to support the data analysis. Three water quality parameters were analysed, namely, total suspended solids (TSS), total phosphorus (TP) and total nitrogen (TN). The data analyses were primarily undertaken using multi criteria decision making methods, PROMETHEE and GAIA. Based on the data obtained, the pollutant load distribution curve (LV) was determined for the individual rainfall events and pollutant types. Accordingly, two sets of first flush indicators were derived from the curve, namely, cumulative load wash-off for every 10% of runoff volume interval (interval first flush indicators or LV) from the beginning of the event and the actual pollutant load wash-off during a 10% increment in runoff volume (section first flush indicators or P). First flush behaviour showed significant variation with pollutant types. TSS and TP showed consistent first flush behaviour. However, the dissolved fraction of TN showed significant differences to TSS and TP first flush while particulate TN showed similarities. Wash-off of TSS, TP and particulate TN during the first 10% of the runoff volume showed no influence from corresponding rainfall intensity. This was attributed to the wash-off of weakly adhered solids on the catchment surface referred to as "short term pollutants" or "weakly adhered solids" load. However, wash-off after 10% of the runoff volume showed dependency on the rainfall intensity. This is attributed to the wash-off of strongly adhered solids being exposed when the weakly adhered solids diminish. The wash-off process was also found to depend on rainfall depth at the end part of the event as the strongly adhered solids are loosened due to impact of rainfall in the earlier part of the event. Events with high intensity rainfall bursts after 70% of the runoff volume did not demonstrate first flush behaviour. This suggests that rainfall pattern plays a critical role in the occurrence of first flush. Rainfall intensity (with respect to the rest of the event) that produces 10% to 20% runoff volume play an important role in defining the magnitude of the first flush. Events can demonstrate high magnitude first flush when the rainfall intensity occurring between 10% and 20% of the runoff volume is comparatively high while low rainfall intensities during this period produces low magnitude first flush. For events with first flush, the phenomenon is clearly visible up to 40% of the runoff volume. This contradicts the common definition that first flush only exists, if for example, 80% of the pollutant mass is transported in the first 30% of runoff volume. First flush behaviour for TN is different compared to TSS and TP. Apart from rainfall characteristics, the composition and the availability of TN on the catchment also play an important role in first flush. The analysis confirmed that events with low rainfall intensity can produce high magnitude first flush for the dissolved fraction of TN, while high rainfall intensity produce low dissolved TN first flush. This is attributed to the source limiting behaviour of dissolved TN wash-off where there is high wash-off during the initial part of a rainfall event irrespective of the intensity. However, for particulate TN, the influence of rainfall intensity on first flush characteristics is similar to TSS and TP. The data analysis also confirmed that first flush can occur as high magnitude first flush, low magnitude first flush or non existence of first flush. Investigation of the influence of catchment characteristics on first flush found that the key factors that influence the phenomenon are the location of the pollutant source, spatial distribution of the pervious and impervious surfaces in the catchment, drainage network layout and slope of the catchment. This confirms that first flush phenomenon cannot be evaluated based on a single or a limited set of parameters as a number of catchment characteristics should be taken into account. Catchments where the pollutant source is located close to the outlet, a high fraction of road surfaces, short travel time to the outlet, with steep slopes can produce high wash-off load during the first 50% of the runoff volume. Rainfall characteristics have a comparatively dominant impact on the wash-off process compared to the catchment characteristics. In addition, the pollutant characteristics also should be taken into account in designing stormwater treatment systems due to different wash-off behaviour. Analysis outcomes confirmed that there is a high TSS load during the first 20% of the runoff volume followed by TN which can extend up to 30% of the runoff volume. In contrast, high TP load can exist during the initial and at the end part of a rainfall event. This is related to the composition of TP available for the wash-off.
Resumo:
Introduction: The delivery of health care in the 21st century will look like no other in the past. The fast paced technological advances that are being made will need to transition from the information age into clinical practice. The phenomenon of e-Health is the over-arching form of information technology and telehealth is one arm of that phenomenon. The uptake of telehealth both in Australia and overseas, has changed the face of health service delivery to many rural and remote communities for the better, removing what is known as the tyranny of distance. Many studies have evaluated the satisfaction and cost-benefit analysis of telehealth across the organisational aspects as well as the various adaptations of clinical pathways and this is the predominant focus of most studies published to date. However, whilst comments have been made by many researchers about the need to improve and attend to the communication and relationship building aspects of telehealth no studies have examined this further. The aim of this study was to identify the patient and clinician experiences, concerns, behaviours and perceptions of the telehealth interaction and develop a training tool to assist these clinicians to improve their interaction skills. Methods: A mixed methods design combining quantitative (survey analysis and data coding) and qualitative (interview analysis) approaches was adopted. This study utilised four phases to firstly qualitatively explore the needs of clients (patients) and clinicians within a telehealth consultation then designed, developed, piloted and quantitatively and qualitatively evaluated the telehealth communication training program. Qualitative data was collected and analysed during Phase 1 of this study to describe and define the missing 'communication and rapport building' aspects within telehealth. This data was then utilised to develop a self-paced communication training program that enhanced clinicians existing skills, which comprised of Phase 2 of this study to develop the interactive program. Phase 3 included evaluating the training program with 26 clinicians and results were recorded pre and post training, whilst phase 4 was the pilot for future recommendations of this training program using a patient group within a Queensland Health setting at two rural hospitals. Results: Comparisons of pre and post training data on 1) Effective communication styles, 2) Involvement in communication training package, 3) satisfaction pre and post training, and 4) health outcomes pre and post training indicated that there were differences between pre and post training in relation to effective communication style, increased satisfaction and no difference in health outcomes between pre and post training for this patient group. The post training results revealed over half of the participants (N= 17, 65%) were more responsive to non-verbal cues and were better able to reflect and respond to looks of anxiousness and confusion from a 'patient' within a telehealth consultation. It was also found that during post training evaluations, clinicians had enhanced their therapeutic communication with greater detail to their own body postures, eye contact and presentation. There was greater time spent looking at the 'patient' with an increase of 35 second intervals of direct eye contact and less time spent looking down at paperwork which decreased by 20 seconds. Overall 73% of the clinicians were satisfied with the training program and 61% strongly agreed that they recognised areas of their communication that needed improving during a telehealth consultation. For the patient group there was significant difference post training in rapport with a mean score from 42 (SD = 28, n = 27) to 48 (SD = 5.9, n = 24). For communication comfort of the patient group there was a significant difference between the pre and post training scores t(10) = 27.9, p = .002, which meant that overall the patients felt less inhibited whilst talking to the clinicians and more understood. Conclusion: The aim of this study was to explore the characteristics of good patient-clinician communication and unmet training needs for telehealth consultations. The study developed a training program that was specific for telehealth consultations and not dependent on a 'trainer' to deliver the content. In light of the existing literature this is a first of its kind and a valuable contribution to the research on this topic. It was found that the training program was effective in improving the clinician's communication style and increased the satisfaction of patient's within an e-health environment. This study has identified some historical myths that telehealth cannot be part of empathic patient centred care due to its technology tag.
Resumo:
The creation of electrocatalysts based on noble metals has received a significant amount of research interest due to their extensive use as fuel cell catalysts and electrochemical sensors. There have been many attempts to improve the activity of these metals through creating nanostructures, as well as post-synthesis treatments based on chemical, electrochemical, sonochemical and thermal approaches. In many instances these methods result in a material with active surface states, which can be considered to be adatoms or clusters of atoms on the surface that have a low lattice co-ordination number making them more prone to electrochemical oxidation at a wide range of potentials that are significantly less positive than those of their bulk metal counterparts. This phenomenon has been termed pre-monolayer oxidation and has been reported to occur on a range of metallic surfaces. In this work we present findings on the presence of active sites on Pd that has been: evaporated as a thin film; electrodeposited as nanostructures; as well as commercially available Pd nanoparticles supported on carbon. Significantly, advantage is taken of the low oxidation potential of these active sites whereby bimetallic surfaces are created by the spontaneous deposition of Ag from AgNO3 to generate Pd/Ag surfaces. Interestingly this approach does not increase the surface area of the original metal but has significant implications for its further use as an electrode material. It results in the inhibition or promotion of electrocatalytic activity which is highly dependent on the reaction of interest. As a general approach the decoration of active catalytic materials with less active metals for a particular reaction also opens up the possibility of investigating the role of the initially present active sites on the surface and identifying the degree to which they are responsible for electrocatalytic activity.
Resumo:
Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called “liquid metal marbles”. We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.