976 resultados para Genetic distance
Resumo:
The International Agency for Research on Cancer classified formaldehyde as carcinogenic to humans because there is “sufficient epidemiological evidence that it causes nasopharyngeal cancer in humans”. Genes involved in DNA repair and maintenance of genome integrity are critically involved in protecting against mutations that lead to cancer and/or inherited genetic disease. Association studies have recently provided evidence for a link between DNA repair polymorphisms and micronucleus (MN) induction. We used the cytokinesis-block micronucleus (CBMN assay) in peripheral lymphocytes and MN test in buccal cells to investigate the effects of XRCC3 Thr241Met, ADH5 Val309Ile, and Asp353Glu polymorphisms on the frequency of genotoxicity biomarkers in individuals occupationally exposed to formaldehyde (n = 54) and unexposed workers (n = 82). XRCC3 participates in DNA double-strand break/recombination repair, while ADH5 is an important component of cellular metabolism for the elimination of formaldehyde. Exposed workers had significantly higher frequencies (P < 0.01) than controls for all genotoxicity biomarkers evaluated in this study. Moreover, there were significant associations between XRCC3 genotypes and nuclear buds, namely XRCC3 Met/Met (OR = 3.975, CI 1.053–14.998, P = 0.042) and XRCC3 Thr/Met (OR = 5.632, CI 1.673–18.961, P = 0.005) in comparison with XRCC3 Thr/Thr. ADH5 polymorphisms did not show significant effects. This study highlights the importance of integrating genotoxicity biomarkers and genetic polymorphisms in human biomonitoring studies.
Resumo:
Background: A common task in analyzing microarray data is to determine which genes are differentially expressed across two (or more) kind of tissue samples or samples submitted under experimental conditions. Several statistical methods have been proposed to accomplish this goal, generally based on measures of distance between classes. It is well known that biological samples are heterogeneous because of factors such as molecular subtypes or genetic background that are often unknown to the experimenter. For instance, in experiments which involve molecular classification of tumors it is important to identify significant subtypes of cancer. Bimodal or multimodal distributions often reflect the presence of subsamples mixtures. Consequently, there can be genes differentially expressed on sample subgroups which are missed if usual statistical approaches are used. In this paper we propose a new graphical tool which not only identifies genes with up and down regulations, but also genes with differential expression in different subclasses, that are usually missed if current statistical methods are used. This tool is based on two measures of distance between samples, namely the overlapping coefficient (OVL) between two densities and the area under the receiver operating characteristic (ROC) curve. The methodology proposed here was implemented in the open-source R software. Results: This method was applied to a publicly available dataset, as well as to a simulated dataset. We compared our results with the ones obtained using some of the standard methods for detecting differentially expressed genes, namely Welch t-statistic, fold change (FC), rank products (RP), average difference (AD), weighted average difference (WAD), moderated t-statistic (modT), intensity-based moderated t-statistic (ibmT), significance analysis of microarrays (samT) and area under the ROC curve (AUC). On both datasets all differentially expressed genes with bimodal or multimodal distributions were not selected by all standard selection procedures. We also compared our results with (i) area between ROC curve and rising area (ABCR) and (ii) the test for not proper ROC curves (TNRC). We found our methodology more comprehensive, because it detects both bimodal and multimodal distributions and different variances can be considered on both samples. Another advantage of our method is that we can analyze graphically the behavior of different kinds of differentially expressed genes. Conclusion: Our results indicate that the arrow plot represents a new flexible and useful tool for the analysis of gene expression profiles from microarrays.
Resumo:
This paper describes an implementation of a long distance echo canceller, operating on full-duplex with hands-free and in real-time with a single Digital Signal Processor (DSP). The proposed solution is based on short length adaptive filters centered on the positions of the most significant echoes, which are tracked by time delay estimators, for which we use a new approach. To deal with double talking situations a speech detector is employed. The floating-point DSP TMS320C6713 from Texas Instruments is used with software written in C++, with compiler optimizations for fast execution. The resulting algorithm enables long distance echo cancellation with low computational requirements, suited for embbeded systems. It reaches greater echo return loss enhancement and shows faster convergence speed when compared to the conventional approach. The experimental results approach the CCITT G.165 recommendation levels.
Resumo:
Ocean Science Meeting. Hawaii Convention Center, Honolulu, Hawaii, USA, 23-28 de Fevereiro.
Resumo:
Aim - To identify clinical and/or genetic predictors of response to several therapies in Crohn’s disease (CD) patients. Methods - We included 242 patients with CD (133 females) aged (mean ± standard deviation) 39 ± 12 years and a disease duration of 12 ± 8 years. The single-nucleotide polymorphisms (SNPs) studied were ABCB1 C3435T and G2677T/A, IL23R G1142A, C2370A, and G9T, CASP9 C93T, Fas G670A and LgC844T, and ATG16L1 A898G. Genotyping was performed with real-time PCR with Taqman probes. Results - Older patients responded better to 5-aminosalicylic acid (5-ASA) and to azathioprine (OR 1.07, p = 0.003 and OR 1.03, p = 0.01, respectively) while younger ones responded better to biologicals (OR 0.95, p = 0.06). Previous surgery negatively influenced response to 5-ASA compounds (OR 0.25, p = 0.05), but favoured response to azathioprine (OR 2.1, p = 0.04). In respect to genetic predictors, we observed that heterozygotes for ATGL16L1 SNP had a significantly higher chance of responding to corticosteroids (OR 2.51, p = 0.04), while homozygotes for Casp9 C93T SNP had a lower chance of responding both to corticosteroids and to azathioprine (OR 0.23, p = 0.03 and OR 0.08, p = 0.02,). TT carriers of ABCB1 C3435T SNP had a higher chance of responding to azathioprine (OR 2.38, p = 0.01), while carriers of ABCB1 G2677T/A SNP, as well as responding better to azathioprine (OR 1.89, p = 0.07), had a lower chance of responding to biologicals (OR 0.31, p = 0.07), which became significant after adjusting for gender (OR 0.75, p = 0.005). Conclusions - In the present study, we were able to identify a number of clinical and genetic predictors of response to several therapies which may become of potential utility in clinical practice. These are preliminary results that need to be replicated in future pharmacogenomic studies.
Resumo:
ECER 2015 "Education and Transition - Contributions from Educational Research", Corvinus University of Budapest from 7 to 11 September 2015.
Resumo:
Aim - A quantative primary study to determine whether increasing source to image distance (SID), with and without the use of automatic exposure control (AEC) for antero-posterior (AP) pelvis imaging, reduces dose whilst still producing an image of diagnostic quality. Methods - Using a computed radiography (CR) system, an anthropomorphic pelvic phantom was positioned for an AP examination using the table bucky. SID was initially set at 110 cm, with tube potential set at a constant 75 kVp, with two outer chambers selected and a fine focal spot of 0.6 mm. SID was then varied from 90 cm to 140 cm with two exposures made at each 5 cm interval, one using the AEC and another with a constant 16 mAs derived from the initial exposure. Effective dose (E) and entrance surface dose (ESD) were calculated for each acquisition. Seven experienced observers blindly graded image quality using a 5-point Likert scale and 2 Alternative Forced Choice software. Signal-to-Noise Ratio (SNR) was calculated for comparison. For each acquisition, femoral head diameter was also measured for magnification indication. Results - Results demonstrated that when increasing SID from 110 cm to 140 cm, both E and ESD reduced by 3.7% and 17.3% respectively when using AEC and 50.13% and 41.79% respectively, when the constant mAs was used. No significant statistical (T-test) difference (p = 0.967) between image quality was detected when increasing SID, with an intra-observer correlation of 0.77 (95% confidence level). SNR reduced slightly for both AEC (38%) and no AEC (36%) with increasing SID. Conclusion - For CR, increasing SID significantly reduces both E and ESD for AP pelvis imaging without adversely affecting image quality.
Resumo:
Major depressive disorder (MDD) is a highly prevalent disorder, which has been associated with an abnormal response of the hypothalamus–pituitary–adrenal (HPA) axis. Reports have argued that an abnormal HPA axis response can be due to an altered P-Glycoprotein (P-GP) function. This argument suggests that genetic polymorphisms in ABCB1 may have an effect on the HPA axis activity; however, it is still not clear if this influences the risk of MDD. Our study aims to evaluate the effect of ABCB1 C1236T, G2677TA and C3435T genetic polymorphisms on MDD risk in a subset of Portuguese patients. DNA samples from 80 MDD patients and 160 control subjects were genotyped using TaqMan SNP Genotyping assays. A significant protection for MDD males carrying the T allele was observed (C1236T: odds ratio (OR) = 0.360, 95% confidence interval [CI]: [0.140– 0.950], p = 0.022; C3435T: OR= 0.306, 95% CI: [0.096–0.980], p = 0.042; and G2677TA: OR= 0.300, 95% CI: [0.100– 0.870], p = 0.013). Male Portuguese individuals carrying the 1236T/2677T/3435T haplotype had nearly 70% less risk of developing MDD (OR = 0.313, 95% CI: [0.118–0.832], p = 0.016, FDR p = 0.032). No significant differences were observed regarding the overall subjects. Our results suggest that genetic variability of the ABCB1 is associated with MDD development in male Portuguese patients. To the best of our knowledge, this is the first report in Caucasian samples to analyze the effect of these ABCB1 genetic polymorphisms on MDD risk.
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
This paper presents a genetic algorithm for the resource constrained multi-project scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on a set of randomly generated problems. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
In the last twenty years genetic algorithms (GAs) were applied in a plethora of fields such as: control, system identification, robotics, planning and scheduling, image processing, and pattern and speech recognition (Bäck et al., 1997). In robotics the problems of trajectory planning, collision avoidance and manipulator structure design considering a single criteria has been solved using several techniques (Alander, 2003). Most engineering applications require the optimization of several criteria simultaneously. Often the problems are complex, include discrete and continuous variables and there is no prior knowledge about the search space. These kind of problems are very more complex, since they consider multiple design criteria simultaneously within the optimization procedure. This is known as a multi-criteria (or multiobjective) optimization, that has been addressed successfully through GAs (Deb, 2001). The overall aim of multi-criteria evolutionary algorithms is to achieve a set of non-dominated optimal solutions known as Pareto front. At the end of the optimization procedure, instead of a single optimal (or near optimal) solution, the decision maker can select a solution from the Pareto front. Some of the key issues in multi-criteria GAs are: i) the number of objectives, ii) to obtain a Pareto front as wide as possible and iii) to achieve a Pareto front uniformly spread. Indeed, multi-objective techniques using GAs have been increasing in relevance as a research area. In 1989, Goldberg suggested the use of a GA to solve multi-objective problems and since then other researchers have been developing new methods, such as the multi-objective genetic algorithm (MOGA) (Fonseca & Fleming, 1995), the non-dominated sorted genetic algorithm (NSGA) (Deb, 2001), and the niched Pareto genetic algorithm (NPGA) (Horn et al., 1994), among several other variants (Coello, 1998). In this work the trajectory planning problem considers: i) robots with 2 and 3 degrees of freedom (dof ), ii) the inclusion of obstacles in the workspace and iii) up to five criteria that are used to qualify the evolving trajectory, namely the: joint traveling distance, joint velocity, end effector / Cartesian distance, end effector / Cartesian velocity and energy involved. These criteria are used to minimize the joint and end effector traveled distance, trajectory ripple and energy required by the manipulator to reach at destination point. Bearing this ideas in mind, the paper addresses the planning of robot trajectories, meaning the development of an algorithm to find a continuous motion that takes the manipulator from a given starting configuration up to a desired end position without colliding with any obstacle in the workspace. The chapter is organized as follows. Section 2 describes the trajectory planning and several approaches proposed in the literature. Section 3 formulates the problem, namely the representation adopted to solve the trajectory planning and the objectives considered in the optimization. Section 4 studies the algorithm convergence. Section 5 studies a 2R manipulator (i.e., a robot with two rotational joints/links) when the optimization trajectory considers two and five objectives. Sections 6 and 7 show the results for the 3R redundant manipulator with five goals and for other complementary experiments are described, respectively. Finally, section 8 draws the main conclusions.
Resumo:
Dissertation presented to obtain a Ph.D. degree in Biology, speciality in Microbiology, by Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
3D laser scanning is becoming a standard technology to generate building models of a facility's as-is condition. Since most constructions are constructed upon planar surfaces, recognition of them paves the way for automation of generating building models. This paper introduces a new logarithmically proportional objective function that can be used in both heuristic and metaheuristic (MH) algorithms to discover planar surfaces in a point cloud without exploiting any prior knowledge about those surfaces. It can also adopt itself to the structural density of a scanned construction. In this paper, a metaheuristic method, genetic algorithm (GA), is used to test this introduced objective function on a synthetic point cloud. The results obtained show the proposed method is capable to find all plane configurations of planar surfaces (with a wide variety of sizes) in the point cloud with a minor distance to the actual configurations. © 2014 IEEE.
Resumo:
Real structures can be thought as an assembly of components, as for instances plates, shells and beams. This later type of component is very commonly found in structures like frames which can involve a significant degree of complexity or as a reinforcement element of plates or shells. To obtain the desired mechanical behavior of these components or to improve their operating conditions when rehabilitating structures, one of the eventual parameters to consider for that purpose, when possible, is the location of the supports. In the present work, a beam-type structure is considered, and for a set of cases concerning different number and types of supports, as well as different load cases, the authors optimize the location of the supports in order to obtain minimum values of the maximum transverse deflection. The optimization processes are carried out using genetic algorithms. The results obtained, clearly show a good performance of the approach proposed. © 2014 IEEE.
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.