940 resultados para Generalized Differential Transform Method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Were synthesized in this work in the following aqueous solution coordination compounds: [Ni(LDP)(H2O)2Cl2].2H2O, [Co(LDP)Cl2].3H2O, [Ni(CDP)Cl2].4H2O, [Co(CDP)Cl2].4H2O, [Ni(BDZ)2Cl2].4H2O and [Co(BDZ)2Cl2(H2O)2]. These complexes were synthesized by stoichiometric addition of the binder in the respective metal chloride solutions. Precipitation occurred after drying the solvent at room temperature. The characterization and proposed structures were made using conventional analysis methods such as elemental analysis (CHN), absorption spectroscopy in the infrared Fourier transform spectroscopy (FTIR), X-ray diffraction by the powder method and Technical thermoanalytical TG / DTG (thermogravimetry / derivative thermogravimetry) and DSC (differential scanning calorimetry). These techniques provided information on dehydration, coordination modes, thermal performance, composition and structure of the synthesized compounds. The results of the TG curve, it was possible to establish the general formula of each compound synthesized. The analysis of X-ray diffraction was observed that four of the synthesized complex crystal structure which does not exhibit the complex was obtained from Ldopa and carbidopa and the complex obtained from benzimidazole was obtained crystal structures. The observations of the spectra in the infrared region suggested a monodentate ligand coordination to metal centers through its amine group for all complexes. The TG-DTG and DSC curves provide important information and on the behavior and thermal decomposition of the synthesized compounds. The molar conductivity data indicated that the solutions of the complexes formed behave as a nonelectrolyte, which implies that chlorine is coordinated to the central atom in the complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The L-moments based index-flood procedure had been successfully applied for Regional Flood Frequency Analysis (RFFA) for the Island of Newfoundland in 2002 using data up to 1998. This thesis, however, considered both Labrador and the Island of Newfoundland using the L-Moments index-flood method with flood data up to 2013. For Labrador, the homogeneity test showed that Labrador can be treated as a single homogeneous region and the generalized extreme value (GEV) was found to be more robust than any other frequency distributions. The drainage area (DA) is the only significant variable for estimating the index-flood at ungauged sites in Labrador. In previous studies, the Island of Newfoundland has been considered as four homogeneous regions (A,B,C and D) as well as two Water Survey of Canada's Y and Z sub-regions. Homogeneous regions based on Y and Z was found to provide more accurate quantile estimates than those based on four homogeneous regions. Goodness-of-fit test results showed that the generalized extreme value (GEV) distribution is most suitable for the sub-regions; however, the three-parameter lognormal (LN3) gave a better performance in terms of robustness. The best fitting regional frequency distribution from 2002 has now been updated with the latest flood data, but quantile estimates with the new data were not very different from the previous study. Overall, in terms of quantile estimation, in both Labrador and the Island of Newfoundland, the index-flood procedure based on L-moments is highly recommended as it provided consistent and more accurate result than other techniques such as the regression on quantile technique that is currently used by the government.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.

In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.

Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is an increasing demand for DNA analysis because of the sensitivity of the method and the ability to uniquely identify and distinguish individuals with a high degree of certainty. But this demand has led to huge backlogs in evidence lockers since the current DNA extraction protocols require long processing time. The DNA analysis procedure becomes more complicated when analyzing sexual assault casework samples where the evidence contains more than one contributor. Additional processing to separate different cell types in order to simplify the final data interpretation further contributes to the existing cumbersome protocols. The goal of the present project is to develop a rapid and efficient extraction method that permits selective digestion of mixtures. Selective recovery of male DNA was achieved with as little as 15 minutes lysis time upon exposure to high pressure under alkaline conditions. Pressure cycling technology (PCT) is carried out in a barocycler that has a small footprint and is semi-automated. Typically less than 10% male DNA is recovered using the standard extraction protocol for rape kits, almost seven times more male DNA was recovered from swabs using this novel method. Various parameters including instrument setting and buffer composition were optimized to achieve selective recovery of sperm DNA. Some developmental validation studies were also done to determine the efficiency of this method in processing samples exposed to various conditions that can affect the quality of the extraction and the final DNA profile. Easy to use interface, minimal manual interference and the ability to achieve high yields with simple reagents in a relatively short time make this an ideal method for potential application in analyzing sexual assault samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the process of engineering design of structural shapes, the flat plate analysis results can be generalized to predict behaviors of complete structural shapes. In this case, the purpose of this project is to analyze a thin flat plate under conductive heat transfer and to simulate the temperature distribution, thermal stresses, total displacements, and buckling deformations. The current approach in these cases has been using the Finite Element Method (FEM), whose basis is the construction of a conforming mesh. In contrast, this project uses the mesh-free Scan Solve Method. This method eliminates the meshing limitation using a non-conforming mesh. I implemented this modeling process developing numerical algorithms and software tools to model thermally induced buckling. In addition, convergence analysis was achieved, and the results were compared with FEM. In conclusion, the results demonstrate that the method gives similar solutions to FEM in quality, but it is computationally less time consuming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pipelines extend thousands of kilometers across wide geographic areas as a network to provide essential services for modern life. It is inevitable that pipelines must pass through unfavorable ground conditions, which are susceptible to natural disasters. This thesis investigates the behaviour of buried pressure pipelines experiencing ground distortions induced by normal faulting. A recent large database of physical modelling observations on buried pipes of different stiffness relative to the surrounding soil subjected to normal faults provided a unique opportunity to calibrate numerical tools. Three-dimensional finite element models were developed to enable the complex soil-structure interaction phenomena to be further understood, especially on the subjects of gap formation beneath the pipe and the trench effect associated with the interaction between backfill and native soils. Benchmarked numerical tools were then used to perform parametric analysis regarding project geometry, backfill material, relative pipe-soil stiffness and pipe diameter. Seismic loading produces a soil displacement profile that can be expressed by isoil, the distance between the peak curvature and the point of contraflexure. A simplified design framework based on this length scale (i.e., the Kappa method) was developed, which features estimates of longitudinal bending moments of buried pipes using a characteristic length, ipipe, the distance from peak to zero curvature. Recent studies indicated that empirical soil springs that were calibrated against rigid pipes are not suitable for analyzing flexible pipes, since they lead to excessive conservatism (for design). A large-scale split-box normal fault simulator was therefore assembled to produce experimental data for flexible PVC pipe responses to a normal fault. Digital image correlation (DIC) was employed to analyze the soil displacement field, and both optical fibres and conventional strain gauges were used to measure pipe strains. A refinement to the Kappa method was introduced to enable the calculation of axial strains as a function of pipe elongation induced by flexure and an approximation of the longitudinal ground deformations. A closed-form Winkler solution of flexural response was also derived to account for the distributed normal fault pattern. Finally, these two analytical solutions were evaluated against the pipe responses observed in the large-scale laboratory tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To reach for a target, we must formulate a movement plan - a difference vector of the target position with respect to the starting hand position. While it is known that the medial part of the intraparietal sulcus (mIPS) and the dorsal premotor (PMd) activity reflects aspects of a kinematic plan for a reaching movement, it is unclear whether or how the two regions may differ. We investigated the functional roles of the mIPS and PMd in the planning of reaching movements using high definition transcranial direct current stimulation (HD-tDCS) and examined changes in horizontal endpoint error when participants were subjected to anodal and cathodal stimulation. The left mIPS and PMd were functionally localized with fMRI in each participant using an interleaved center-out pointing and saccade task and mapped onto the scalp using Brainsight. We adopted a randomized, single-blind design and applied anodal and cathodal stimulation (2mA for 20 min; 3cm radius 4x1 electrode placement) during 4 separate visits scheduled at least a week apart. Each participant performed 250 baseline, stimulation, and post-stimulation memory-guided reaches starting from one of two initial hand positions (IHPs) to one of 4 briefly flashed targets (20 cm distant, 5 cm apart horizontally) while fixating on a straight-ahead cross located at the target line. Separate 2-way repeated measures ANOVAs of horizontal endpoint error difference after cathodal tDCS at each stimulation site revealed a significant IHP by target position interaction effect at the left mIPS, and significant IHP and target main effects at the left PMd. Behaviorally, these effects corresponded to IHP-dependent contractions after cathodal mIPS tDCS and IHP-independent contractions after cathodal PMd tDCS. These results suggest that the movement vector is not yet formed at the input level of mIPS, but is encoded at the input of PMd. These results also indicate that tDCS is a viable, useful method in investigating movement planning properties through temporary perturbations of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to determine if a high Tg polymer (Eudragit® S100) could be used to stabilize amorphous domains of polyethylene oxide (PEO) and hence improve the stability of binary polymer systems containing celecoxib (CX). We propose a novel method of stabilizing the amorphous PEO solid dispersion through inclusion of a miscible, high Tg polymer, namely, that can form strong inter-polymer interactions. The effects of inter-polymer interactions and miscibility between PEO and Eudragit S100 are considered. Polymer blends were first manufactured via hot-melt extrusion at different PEO/S100 ratios (70/30, 50/50, and 30/70 wt/wt). Differential scanning calorimetry and dynamic mechanical thermal analysis data suggested a good miscibility between PEO and S100 polymer blends, particularly at the 50/50 ratio. To further evaluate the system, CX/PEO/S100 ternary mixtures were extruded. Immediately after hot-melt extrusion, a single Tg that increased with increasing S100 content (anti-plasticization) was observed in all ternary systems. The absence of powder X-ray diffractometry crystalline Bragg’s peaks also suggested amorphization of CX. Upon storage (40°C/75% relative humidity), the formulation containing PEO/S100 at a ratio of 50:50 was shown to be most stable. Fourier transform infrared studies confirmed the presence of hydrogen bonding between Eudragit S100 and PEO suggesting this was the principle reason for stabilization of the amorphous CX/PEO solid dispersion system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The following report summarizes research activities on the project for the period December 1, 1986 to November 30, 1987. Research efforts for the second year deviated slightly from those described in the project proposal. By the end of the second year of testing, it was possible to begin evaluating how power plant operating conditions influenced the chemical and physical properties of fly ash obtained from one of the monitored power plants (Ottumwa Generating Station, OGS). Hence, several of the tasks initially assigned to the third year of the project (specifically tasks D, E, and F) were initiated during the second year of the project. Manpower constraints were balanced by delaying full scale implementation of the quantitative X-ray diffraction and differential thermal analysis tasks until the beginning of the third year of the project. Such changes should have little bearing on the outcome of the overall project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study eigenfunctions and fundamental solutions for the three parameter fractional Laplace operator $\Delta_+^{(\alpha,\beta,\gamma)}:= D_{x_0^+}^{1+\alpha} +D_{y_0^+}^{1+\beta} +D_{z_0^+}^{1+\gamma},$ where $(\alpha, \beta, \gamma) \in \,]0,1]^3$, and the fractional derivatives $D_{x_0^+}^{1+\alpha}$, $D_{y_0^+}^{1+\beta}$, $D_{z_0^+}^{1+\gamma}$ are in the Riemann-Liouville sense. Applying operational techniques via two-dimensional Laplace transform we describe a complete family of eigenfunctions and fundamental solutions of the operator $\Delta_+^{(\alpha,\beta,\gamma)}$ in classes of functions admitting a summable fractional derivative. Making use of the Mittag-Leffler function, a symbolic operational form of the solutions is presented. From the obtained family of fundamental solutions we deduce a family of fundamental solutions of the fractional Dirac operator, which factorizes the fractional Laplace operator. We apply also the method of separation of variables to obtain eigenfunctions and fundamental solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier-Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint second-order elliptic partial differential equations. In order to solve the resulting system of nonlinear equations, we exploit a (damped) Newton-GMRES algorithm. Numerical experiments demonstrating the practical performance of the proposed discontinuous Galerkin method with higher-order polynomials are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The predictive capabilities of computational fire models have improved in recent years such that models have become an integral part of many research efforts. Models improve the understanding of the fire risk of materials and may decrease the number of expensive experiments required to assess the fire hazard of a specific material or designed space. A critical component of a predictive fire model is the pyrolysis sub-model that provides a mathematical representation of the rate of gaseous fuel production from condensed phase fuels given a heat flux incident to the material surface. The modern, comprehensive pyrolysis sub-models that are common today require the definition of many model parameters to accurately represent the physical description of materials that are ubiquitous in the built environment. Coupled with the increase in the number of parameters required to accurately represent the pyrolysis of materials is the increasing prevalence in the built environment of engineered composite materials that have never been measured or modeled. The motivation behind this project is to develop a systematic, generalized methodology to determine the requisite parameters to generate pyrolysis models with predictive capabilities for layered composite materials that are common in industrial and commercial applications. This methodology has been applied to four common composites in this work that exhibit a range of material structures and component materials. The methodology utilizes a multi-scale experimental approach in which each test is designed to isolate and determine a specific subset of the parameters required to define a material in the model. Data collected in simultaneous thermogravimetry and differential scanning calorimetry experiments were analyzed to determine the reaction kinetics, thermodynamic properties, and energetics of decomposition for each component of the composite. Data collected in microscale combustion calorimetry experiments were analyzed to determine the heats of complete combustion of the volatiles produced in each reaction. Inverse analyses were conducted on sample temperature data collected in bench-scale tests to determine the thermal transport parameters of each component through degradation. Simulations of quasi-one-dimensional bench-scale gasification tests generated from the resultant models using the ThermaKin modeling environment were compared to experimental data to independently validate the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

No âmbito do Relatório Científico Final do Trabalho de Investigação Aplicada, o presente trabalho com o título “Os Recursos Cinotécnicos e a sua necessidade no Exército Português” estuda o emprego operacional atual, fruto das valências cinotécnicas existentes e as tarefas operacionais que podem, pelos referidos recursos, ser apoiadas. O autor considera também as características físicas do cão, as implicações logísticas e financeiras e a doutrina que concorrem para o referido emprego operacional, elencando lacunas existentes que, quando colmatadas poderão concorrer para um emprego operacional eficiente dos recursos cinotécnicos do Exército Português. Para obtenção de dados foi conduzida análise documental e bibliográfica e efetuados inquéritos por entrevista a comandantes de Batalhão/ Grupo com meios cinotécnicos na sua orgânica ou em apoio aos mesmos, aos comandantes das unidades cinotécnicas do Exército Português e dos restantes ramos das Forças Armadas e Forças de Segurança, ainda a comandantes da Força de Operações Especiais. O objetivo deste trabalho passa por avaliar de que forma podem os recursos cinotécnicos do Exército Português contribuir para o melhor desempenho das suas unidades operacionais. Para a consecução do mesmo o autor fez uso do método indutivo onde, com base no emprego operacional junto dos Paraquedistas e da Polícia do Exército, generalizou o que poderia ser profícuo para todas as unidades operacionais do Exército Português, bem como todas as lacunas que devem ser colmatadas para apoio ao mesmo. No âmbito da doutrina é importante o fornecimento aos comandantes das unidades apoiadas informação sobre as capacidades, limitações e regras de segurança relativos ao emprego dos binómios em apoio a cada tarefa das tipologias de operações, fornecendo informações precisas e detalhadas sobre o que cada tipo de cão consegue fazer, durante quanto tempo e em que condições ambientais pois, mesmo havendo atualmente a PDE 0-20-18, sendo a cinotecnia uma área muito técnica, a falta da referida doutrina pode se transformar numa condicionante ao emprego dos binómios. A referida PDE, atualmente, assume-se como um potenciador do emprego dos recursos cinotécnicos. No âmbito logístico pode ser pensada uma rede logística própria tendo em conta o emprego operacional e a projeção dos binómios, explícitando desde a forma de aquisição dos cães até ao suporte à sua projeção, contudo deve-se pesar, por outro lado, se o emprego dos binómios em treinos operacionais ou em missões assume um peso significativo na manobra logística global de modo a exigir criação de uma rede própria. As características naturais do cão são um potenciador da ação e sentimento de segurança, podendo, ainda, ser usadas para colmatar a falta de efetivos. Quanto ao emprego operacional importa salientar a deteção de explosivos e estupefacientes, os cães de sentinela, binómios de guarda e binómios de exploração (que em simultâneo executam patrulhas de segurança).