922 resultados para Functional outcomes
Resumo:
The direct costs of managing adverse outcomes from Australian health care are estimated to be $2 billion. The audit cycle is considered an important tool to assist in the preventive management of adverse outcomes.Australian guidelines for audit cycle design allow for comparison of data sets derived from similar surgical specialities. However a lack of data set standardisation inhibits meaningful comparisons of foot and ankle surgical audits. This research will assist development of a best practice model for auditing foot and ankle surgery. Data derived from this model will improve the safety and quality of foot and ankle surgery. The preliminary phase of this process is to identify and understand the attitudes and behaviours of how and why surgeons participate in the audit cycle. A descriptive embedded multiple case study research design is planned to provide an intense focus on a single phenomenon (the audit cycle) within its real life context (clinical governance). The measures to be included in the case study have been identified by the Balanced Patient Safety Measurement Framework. These include: audit and peer review activity, provider attitudes to patient safety, safety learning, action and performance. A purposive sample of 6 to 8 surgeons (units of analysis) from 3 to 4 specialities (cases) will undergo semi-structured interview. This will investigate: current audit tools and processes; attitudes; and behaviours of surgeons to the audit cycle. Similarities in and differences between the units of analysis will indicate which identified measures function as barriers or enablers of the audit cycle. Reliability and validity (external and construct) will be assessed using established methods for case studies. The descriptive embedded multiple case study will reveal how and why foot and ankle surgeons participate in the audit cycle. This will inform further research to improve the outcomes of foot and ankle surgery through development of an audit tool.
Resumo:
Queensland fruit fly is Australia's most serious insect pest of horticulture. The fly lays its eggs into fruit, where they hatch into maggots which destroy the fruit. Understanding egg laying behaviour, known as oviposition, is a critical but under-researched aspect of fruit fly biology. This thesis focused on three aspects of oviposition: the role of fruit peel as a physical barrier to oviposition; the quality of fruit for maggot development; and the structure and wear of the egg laying organ – the ovipositor. Results showed that flies selected fruit based on their suitability for offspring survival, not because of the softness or hardness of fruit peel. Previously reported use of holes or wounds in fruit peel by ovipositing females was determined to be a mechanism which saved the female time, not a mechanism to reduce ovipositor wear. The results offer insights into the evolution of host use by fruit flies and their sustainable management.
Resumo:
Even though heatwave events have become more frequent and intense in most regions around the world, little is known about the impact of heatwave on birth outcomes. This thesis uses a population-based study design to investigate the relationship between maternal heatwave exposure and adverse birth outcomes in Brisbane, Australia. This study found that heatwave exposure at any stage of pregnancy can be harmful to fetal growth, and further increase the risk of adverse birth outcomes. Both short- and long-term effects of heatwave on adverse birth outcomes were found. The findings in this thesis may have significant public health implications.
Resumo:
Supported by contemporary theories of architectural aesthetics and neuro-aesthetics this paper presents a case for the use of portable fNIRS imaging in the assessment of emotional responses to spatial environments experienced by both blind and sighted. The aim of the paper is to outline the implications of fNIRS for spatial research and practice within the field of architecture, thereby suggesting a potential taxonomy of particular formations of space and affect. Empirical neurological study of affect and spatial experience from an architectural design perspective remains in many instances unchartered. Clinical research using the portable non-invasive neuro-imaging device, functional near infrared spectroscopy (fNIRS) is proving convincing in its ability to detect emotional responses to visual, spatio-auditory and task based stimuli, providing a firm basis to potentially track cortical activity in the appraisal of architectural environments. Additionally, recent neurological studies have sought to explore the manifold sensory abilities of the visually impaired to better understand spatial perception in general. Key studies reveal that early blind participants perform as well as sighted due to higher auditory and somato-sensory spatial acuity. For instance, face vision enables the visually impaired to detect environments through skin pressure, enabling at times an instantaneous impression of the layout of an unfamiliar environment. Studies also report pleasant and unpleasant emotional responses such as ‘weightedness’ or ‘claustrophobia’ within certain interior environments, revealing a deeper perceptual sensitivity then would be expected. We conclude with justification that comparative fNIRS studies between the sighted and blind concerning spatial experience have the potential to provide greater understanding of emotional responses to architectural environments.
Resumo:
Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTI). To cause a UTI, UPEC must adhere to the epithelial cells of the urinary tract and overcome the shear flow forces of urine. This function is mediated primarily by fimbrial adhesins, which mediate specific attachment to host cell receptors. Another group of adhesins that contributes to UPEC-mediated UTI is autotransporter (AT) proteins. AT proteins possess a range of virulence properties, such as adherence, aggregation, invasion, and biofilm formation. One recently characterized AT protein of UPEC is UpaH, a large adhesin-involved-in-diffuse-adherence (AIDA-I)-type AT protein that contributes to biofilm formation and bladder colonization. In this study we characterized a series of naturally occurring variants of UpaH. We demonstrate that extensive sequence variation exists within the passenger-encoding domain of UpaH variants from different UPEC strains. This sequence variation is associated with functional heterogeneity with respect to the ability of UpaH to mediate biofilm formation. In contrast, all of the UpaH variants examined retained a conserved ability to mediate binding to extracellular matrix (ECM) proteins. Bioinformatic analysis of the UpaH passenger domain identified a conserved region (UpaHCR) and a hydrophobic region (UpaHHR). Deletion of these domains reduced biofilm formation but not the binding to ECM proteins. Despite variation in the upaH sequence, the transcription of upaH was repressed by a conserved mechanism involving the global regulator H-NS, and mutation of the hns gene relieved this repression. Overall, our findings shed new light on the regulation and functions of the UpaH AT protein.
Resumo:
Autotransporter (AT) proteins are found in all Escherichia coli pathotypes and are often associated with virulence. In this study we took advantage of the large number of available E. coli genome sequences to perform an in-depth bioinformatic analysis of AT-encoding genes. Twenty-eight E. coli genome sequences were probed using an iterative approach, which revealed a total of 215 AT-encoding sequences that represented three major groups of distinct domain architecture: (i) serine protease AT proteins, (ii) trimeric AT adhesins and (iii) AIDA-I-type AT proteins. A number of subgroups were identified within each broad category, and most subgroups contained at least one characterized AT protein; however, seven subgroups contained no previously described proteins. The AIDA-I-type AT proteins represented the largest and most diverse group, with up to 16 subgroups identified from sequence-based comparisons. Nine of the AIDA-I-type AT protein subgroups contained at least one protein that possessed functional properties associated with aggregation and/or biofilm formation, suggesting a high degree of redundancy for this phenotype. The Ag43, YfaL/EhaC, EhaB/UpaC and UpaG subgroups were found in nearly all E. coli strains. Among the remaining subgroups, there was a tendency for AT proteins to be associated with individual E. coli pathotypes, suggesting that they contribute to tissue tropism or symptoms specific to different disease outcomes.
Resumo:
In prototypic Escherichia coli K-12 the introduction of disulfide bonds into folding proteins is mediated by the Dsb family of enzymes, primarily through the actions of the highly oxidizing protein EcDsbA. Homologues of the Dsb catalysts are found in most bacteria. Interestingly, pathogens have developed distinct Dsb machineries that play a pivotal role in the biogenesis of virulence factors, hence contributing to their pathogenicity. Salmonella enterica serovar (sv.) Typhimurium encodes an extended number of sulfhydryl oxidases, namely SeDsbA, SeDsbL, and SeSrgA. Here we report a comprehensive analysis of the sv. Typhimurium thiol oxidative system through the structural and functional characterization of the three Salmonella DsbA paralogues. The three proteins share low sequence identity, which results in several unique three-dimensional characteristics, principally in areas involved in substrate binding and disulfide catalysis. Furthermore, the Salmonella DsbA-like proteins also have different redox properties. Whereas functional characterization revealed some degree of redundancy, the properties of SeDsbA, SeDsbL, and SeSrgA and their expression pattern in sv. Typhimurium indicate a diverse role for these enzymes in virulence.
Resumo:
Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit.