996 resultados para Energética alimentar
Resumo:
The study aimed to evaluate energy indicators of a new production system of yellow passion fruit in Marilia-SP. Analyzed the inputs of the biological energy, fossil and industrial and output energy in the form of fruits produced per unit area as well as five energy indicators. The input energy amounted 155,810.13MJ ha(-1). Chemical fertilizers and pesticides accounted for 71% and 24% of indirect energy industry, respectively. The activity generated per cycle / ha, 587.700.00MJ, and cultural productivity 0.19MJ kg(-1). The efficiency culture was 3.77. The cultural energy net totaled 431,889.87MJ ha(-1). The energy efficiency (4.17) and energy balance (550,312.91MJ ha(-1)) was favorable. It was concluded that the direct energy consumption from fossil fuels, even though significant, yet permits the production of the fruit of an environmentally sustainable manner. Chemical fertilizers and pesticides were the most representative of indirect energy industry due to the intensification of fertilization as a means of disease prevention.
Resumo:
Corn is the crop most used for making silage. The efficiency of the process should also be evaluated by cost per kg of dry matter harvested (kgDM). The objective of this study was to evaluate energy consumption in the harvest of corn hybrids for silage depending on the texture of the hybrid, four and three harvest maturities of particle sizes - Tp was used a tractor Massey Ferguson MF 610 model 86 cv. Cutting and harvesting the forage harvester is used model JF92 Z10. To obtain data on fuel consumption (CC) and time spent for each plot, we used a flow meter, installed near the fuel filter of the tractor. The experimental design was completely randomized in a split plot. The interaction between factors triple stage hybrid * Harvest * Tp. The velocity and displacement of the tractor were different for the maturities for hybrid hard texture. The CC schedule for hybrid dent increased harvest maturity earlier and at lower Tp. Consumption was lower by kgDM later maturity, hard texture and bite respectively. The theoretical power was higher in earlier maturity and yield were higher for hybrid hard texture in the most advanced. The CC was lower in late maturity and the hybrid hard texture can be used for silage in relation to the Cc and income in later maturity in higher Tp.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Pós-graduação em Ciência e Tecnologia Animal - FEIS
Resumo:
This work aimed to evaluate the repellent and deterrent effect of the application of concentrations of neem and chinaberry oil on bean leaves on the leaf beetles Diabrotica speciosa (Germar) and Cerotoma arcuata (Olivier). The concentrations of neem oil tested were 0.625, 1.25, 2.50, 5.00, 10.00 and 20,00 mL, corresponding respectively to 1, 2, 4, 8, 17 and 33 ppm of azadirachtin A and the concentrations of chinaberry oil used were the same used to neem oil, corresponding, however, to 1.875, 3.75, 7.50, 15.00, 30.00 and 60.00 mg mL(-1) of chinaberry extract, respectively. For the free-choice tests, glass containers were used as arenas, whereas for the no-choice tests Petri dishes were used, where in both one insect per treatment was released in the center. Attractiveness was evaluated in predetermined time periods, in addition to the leaf consumption, at the end of the experiment. Neem oil is repellent to D. speciosa and C. arcuata, with more efficient results at the 5.00, 10.00 and 20.00 mL concentrations. All concentrations of neem oil reduce leaf consumption of both insects, except in the no-choice test with D. speciosa, in which only the 10.00 and 20.00 mL concentrations are deterrent. Chinaberry oil provides high repellent activity on both leaf beetle species, and the 10.00 and 20.00 mL concentrations stood out. The 10.00 and 20.00 mL concentrations of chinaberry oil are deterrent to D. speciosa and C. arcuata.
Resumo:
Energy efficiency has gained significant importance in recent years, mainly due to cyclical climatic conditions and current supply of natural resources. The present work deals with the procedures and requirements necessary to evaluate a building to a level of efficiency corresponding to your project and the actual implemented. To perform this analysis, we adopted the technical regulation efficiency prepared by Procel along with other agencies of the sector. The Regulation aims to create a model for the technical evaluation of the efficiency of buildings, popularize and expand the theme specification of conditions drawn up today. The building analyzed in this study was the library of UNESP, Guaratinguetá. Still, after the completion of the final efficiency analysis, are presented proposals for intervention that can improve and enhance the present situation of the building. The interventions are based on many technical factors and local conditions of climate and supply of resource. The issue of sustainability was explained in order to serve as a tool to expand the options available to upgrade a building in front of their impact on the environment
Resumo:
In wood processing industries, which use electrical equipment in the production process, in most cases these are badly scaled or operate under inadequate conditions, resulting directly in industrial energy efficiency, which proves important because besides having technological innovation, also with practices and policies, aims to decrease power consumption. So in a wiring project should take into account the variables that influence energy efficiency. Thus this work has been reviewed and subsequently calculated some of these variables, such as active power, power factor and demand for the entire industry (global) and also for specific equipment, the chipper. The network analysis was performed in a wood processing industry in the city of Taquarivaí - SP, and evaluated these variables with a network analyzer and also by analysis on energy bills, which were found in both analysis levels below those found in literature. These factors are due to poor design, improper use, storage of equipment or even by characteristic of the production process, ie, the equipment running on empty because of the volatility of production