996 resultados para Electron correlation
Resumo:
This article summarizes the basic principles of electron probe microanalysis, with examples of applications in materials science and geology that illustrate the capabilities of the technique.
Resumo:
Nowadays Scanning Electron Microscopy (SEM) is a basic and fundamental tool in the study of geologic samples. The collision of a highlyaccelerated electron beam with the atoms of a solid sample results in theproduction of several radiation types than can be detected and analysed byspecific detectors, providing information of the chemistry and crystallography ofthe studied material. From this point of view, the chamber of a SEM can beconsidered as a laboratory where different experiments can be carried out. Theapplication of SEM to geology, especially in the fields of mineralogy andpetrology has been summarised by Reed (1996).The aim of this paper is to showsome recent applications in the characterization of geologic materials.
Resumo:
This article summarizes the basic principles of scanning electron microscopy and the capabilities of the technique with different examples ofapplications in biomedical and biological research.
Resumo:
The number of existing protein sequences spans a very small fraction of sequence space. Natural proteins have overcome a strong negative selective pressure to avoid the formation of insoluble aggregates. Stably folded globular proteins and intrinsically disordered proteins (IDP) use alternative solutions to the aggregation problem. While in globular proteins folding minimizes the access to aggregation prone regions IDPs on average display large exposed contact areas. Here, we introduce the concept of average meta-structure correlation map to analyze sequence space. Using this novel conceptual view we show that representative ensembles of folded and ID proteins show distinct characteristics and responds differently to sequence randomization. By studying the way evolutionary constraints act on IDPs to disable a negative function (aggregation) we might gain insight into the mechanisms by which function - enabling information is encoded in IDPs.
Resumo:
The nanoparticles developed are based on chitosan, a biocompatible and biodegradable polysaccharide. The chitosan nanoparticles are formed in an entirely water-based process by electrostatic interactions with other biocompatible molecules. As a prerequisite to understand the fate of such nanoparticles in cells, comprehensive characterization and stability studies serve to identify quantitatively the impact of the raw material characteristics and preparation conditions on the nanoparticle characteristics. Methods included H-1 NMR spectroscopy, dilution viscometry, particle size analysis and electron microscopy. Cytotoxicity and cell uptake experiments on RAW 264.7 murine macrophages and p23 murine endothelial cells were performed to investigate the correlation with nanoparticle characteristics and effect of surface decoration with alginate. Cytotoxicity was assessed by the MTT survival test; cell uptake was monitored by fluorescent microscopy using labeled polymers.
Resumo:
OBJECTIVE: Juvenile dermatomyositis (DM) is a systemic autoimmune disorder of unknown immunopathogenesis in which the immune system targets the microvasculature of skeletal muscles, skin, and other organs. The current mainstay of therapy is a steroid regimen in combination with other immunosuppressive treatments. To date, no validated markers for monitoring disease activity have been identified, which hampers personalized treatment. This study was undertaken to identify a panel of proteins specifically related to active disease in juvenile DM. METHODS: We performed a multiplex immunoassay for plasma levels of 45 proteins related to inflammation in 25 patients with juvenile DM in 4 clinically well-defined groups, as determined by clinical activity and treatment. We compared them to 14 age-matched healthy children and 8 age-matched children with nonautoimmune muscle disease. RESULTS: Cluster analysis of circulating proteins showed distinct profiles for juvenile DM patients and controls based on a group of 10 proteins. In addition to CXCL10, tumor necrosis factor receptor type II (TNFRII) and galectin 9 were significantly increased in active juvenile DM. The levels of these 3 proteins were tightly linked to active disease and correlated with clinical scores (as measured by the Childhood Myositis Assessment Scale and physician's global assessment of disease activity on a visual analog scale). CONCLUSION: Our findings indicate that CXCL10, TNFRII, and galectin 9 correspond to disease status in juvenile DM and thus could be helpful in monitoring disease activity and guiding treatment. Furthermore, they might provide new knowledge about the pathogenesis of this autoimmune disease.
Resumo:
We study the details of electronic transport related to the atomistic structure of silicon quantum dots embedded in a silicon dioxide matrix using ab initio calculations of the density of states. Several structural and composition features of quantum dots (QDs), such as diameter and amorphization level, are studied and correlated with transport under transfer Hamiltonian formalism. The current is strongly dependent on the QD density of states and on the conduction gap, both dependent on the dot diameter. In particular, as size increases, the available states inside the QD increase, while the QD band gap decreases due to relaxation of quantum confinement. Both effects contribute to increasing the current with the dot size. Besides, valence band offset between the band edges of the QD and the silica, and conduction band offset in a minor grade, increases with the QD diameter up to the theoretical value corresponding to planar heterostructures, thus decreasing the tunneling transmission probability and hence the total current. We discuss the influence of these parameters on electron and hole transport, evidencing a correlation between the electron (hole) barrier value and the electron (hole) current, and obtaining a general enhancement of the electron (hole) transport for larger (smaller) QD. Finally, we show that crystalline and amorphous structures exhibit enhanced probability of hole and electron current, respectively.
Resumo:
Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.
Resumo:
A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances--including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum.
Resumo:
Aldosterone exerts its effects through interactions with two types of binding sites, the mineralocorticoid (MR) and the glucocorticoid (GR) receptors. Although both receptors are known to be involved in the anti-natriuretic response to aldosterone, the mechanisms of signal transduction leading to modulation of electrolyte transport are not yet fully understood. This study measured the Na(+) and K(+) urinary excretion and the mRNA levels of three known aldosterone-induced transcripts, the serum and glucocorticoid-induced kinase (Sgk-1), the alpha subunit of the epithelial Na(+) channel (alphaENaC), and the glucocorticoid-induced-leucine-zipper protein (GILZ) in the whole kidney and in isolated cortical collecting tubules of adrenalectomized rats treated with low doses of aldosterone and/or dexamethasone. The resulting plasma concentrations of both steroids were close to 1 nmol/L. Aldosterone, given with or without dexamethasone, induced anti-natriuresis and kaliuresis, whereas dexamethasone alone did not. GILZ and alphaENaC transcripts were higher after treatment with either or both hormones, whereas the mRNA abundance of Sgk-1 was increased in the cortical collecting tubule by aldosterone but not by dexamethasone. We conclude the increased expression of Sgk-1 in the cortical collecting tubules is a primary event in the early antinatriuretic and kaliuretic responses to physiologic concentrations of aldosterone. Induction of alphaENaC and/or GILZ mRNAs may play a permissive role in the enhancement of the early and/or late responses; these effects may be necessary for a full response but do not by themselves promote early changes in urinary Na(+) and K(+) excretion.
Resumo:
OBJECTIVE: To evaluate the correlation between clinical measures of disease activity and a ultrasound (US) scoring system for synovitis applied by many different ultrasonographers in a daily routine care setting within the Swiss registry for RA (SCQM) and further to determine the sensitivity to change of this US Score. METHODS: One hundred and eight Swiss rheumatologists were trained in performing the Swiss Sonography in Arthritis and Rheumatism (SONAR) score. US B-mode and Power Doppler (PwD) scores were correlated with DAS28 and compared between the clinical categories in a cross-sectional cohort of patients. In patients with a second US (longitudinal cohort), we investigated if change in US score correlated with change in DAS and evaluated the responsiveness of both methods. RESULTS: In the cross-sectional cohort with 536 patients, correlation between the B-mode score and DAS28 was significant but modest (Pearson coefficient r=0.41, P<0.0001). The same was true for the PwD score (r=0.41, P<0.0001). In the longitudinal cohort with 183 patients we also found a significant correlation between change in B-mode and in PwD score with change in DAS28 (r=0.54, P<0.0001 and r=0.46, P<0.0001, respectively). Both methods of evaluation (DAS and US) showed similar responsiveness according to standardized response mean (SRM). CONCLUSIONS: The SONAR Score is practicable and was applied by many rheumatologists in daily routine care after initial training. It demonstrates significant correlations with the degree of as well as change in disease activity as measured by DAS. On the level of the individual, the US score shows many discrepancies and overlapping results exist.
Resumo:
The extended use of brentuximab-vedotin was reported for CD30(+) nonanaplastic peripheral T-cell lymphomas (PTCLs) with promising efficacy. CD30 status assessment is thus a critical factor for therapeutic decision, but the reliability of immunohistochemistry (IHC) in evaluating its expression remains to be defined. This prompted us to investigate the correlation between semiquantitative CD30 protein assessment by IHC and messenger RNA (mRNA) assessment by microarrays in a cohort of 376 noncutaneous PTCLs representative of the main entities. By IHC, CD30 expression was heterogeneous across and within entities and significantly associated with large tumor cell size. In addition to 100% anaplastic large-cell lymphomas, 57% of other PTCL entities were CD30-positive at a 5% threshold. CD30 protein expression was highly correlated to mRNA levels. mRNA levels were bimodal, separating high from low CD30-expressing PTCL cases. We conclude that IHC is a valuable tool in clinical practice to assess CD30 expression in PTCLs.
Resumo:
The major objective of this work was to evaluate the potential of image analysis for characterizing air voids in Portland cement Concrete (PCC), voids and constituents of Asphalt Concrete (AC) and aggregate gradation in AC. Images for analysis were obtained from a scanning electron microscope (SEM). Sample preparation techniques are presented that enhance signal differences so that backscattered electron (BSE) imaging, which is sensitive to atomic number changes, can be effectively employed. Work with PCC and AC pavement core samples has shown that the low vacuum scanning electron microscope (LVSEM) is better suited towards rapid analyses. The conventional high vacuum SEM can also be used for AC and PCC analyses but some distortion within the sample matrix will occur. Images with improved resolution can be obtained from scanning electron microscope (SEM) backscatter electron (BSE) micrographs. In a BSE image, voids filled with barium sulfate/resin yield excellent contrast in both PCC and AC. There is a good correlation between percent of air by image analysis and linear traverse.
Resumo:
Visual areas 17 and 18 were studied with morphometric methods for numbers of neurons, glia, senile plaques (SP), and neurofibrillary tangles (NFT) in 13 cases of Alzheimer's disease (AD) as compared to 11 controls. In AD cases, the mean neuronal density was significantly decreased by about 30% in both areas 17 and 18, while the glial density was increased significantly only in area 17. The volume of area 17 was unchanged in AD cases but its total number of neurons was decreased by 33% and its total number of glia increased by 45% compared to controls. In AD the number of SP was similar in areas 17 and 18, while that of NFT was significantly higher in area 18. The number of neurons with NFT was only 2% in area 17 and about 10% in area 18. The discrepancy between the loss of neurons and the amount of NFT suggests that neuronal loss can occur without passing through NFT degeneration. The deposition of SP was correlated with glial proliferation, but not with neuronal loss or neurofibrillary degeneration.
Resumo:
The Falling Weight Deflectometer (FWD) has become the "standard" for deflection testing of pavements. Iowa has used a Road Rater since 1976 to obtain deflection information. A correlation between the Road Rater and the FWD was needed if Iowa was going to continue with the Road Rater. Comparative deflection testing was done using a Road Rater Model 400 and a Pynatest 8000 FWD on 26 pavement sections. The SHRP contractor, Braun Intertec Pavement, Inc., provided the FWD testing. The r^2 for the linear correlations ranged from 0.90 to 0.99 for the different pavement types and sensor locations.