932 resultados para Direct Load Control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introducción: Los trastornos musculoesqueléticos de origen laboral son la primera causa de baja en los trabajadores produciendo disminución de la capacidad productiva y reducción del salario y para las empresas suponen disfunciones de la actividad y pérdidas económicas. Objetivo: Identificar la prevalencia de síntomas musculoesqueléticos del personal tanto operativo como administrativo que laboran en la central eléctrica en Norte de Santander. Metodología: Estudio de corte transversal en una población de 184 trabajadores que laboran para la sección de gestión y control de pérdidas de energía en la Central eléctrica de Norte de Santander. Se utilizó como instrumento para la recolección de información el cuestionario Nórdico de Kuorinka en su versión en español, que permite realizar la detección y análisis de síntomas musculoesqueléticos de la población expuesta, el cual consta de dos partes, la primera que incluye datos socio demográficos tales como antecedentes personales y actividad laboral y la segunda que permite registrar síntomas músculo-esqueléticos en los segmentos corporales (cuello, hombros, codos, muñecas/manos, espalda superior, espalda inferior). El análisis descriptivo incluyó el cálculo de la media y los porcentajes y para estimar asociaciones se utilizó odds ratio (OR) Resultados: El 88% de los trabajadores eran hombres, con una media de edad de 36,1(±10,5) años. El 20,7% percibía molestias en el cuello y el 17,4 % en las muñecas. Tuvieron más riesgo de percibir molestias en la región del cuello las mujeres (OR 20,54), los trabajadores que pertenecen al sector administrativo (OR 15,9), los que no realizar actividad física (OR 2,33), los que tienen menos de 1 año en el cargo (OR 2,9) y los que tenían un Índice de masa corporal mayor de 25 (OR 1,31). Conclusiones: Ser mujer y trabajar en el sector administrativo influyen en la percepción de molestias y síntomas osteomusculares con mayor prevalencia en las zonas corporales de el cuello y las muñecas o manos. De acuerdo a lo encontrado en el estudio se sugiere la realización de actividades en salud laboral que prevengan el riesgo ergonómico.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introducción: El trabajador avícola presenta un alto riesgo de sufrir de Desórdenes Musculo esqueléticos, debido a la realización de trabajos manuales repetitivos; posición bípeda prolongada, posturas por fuera de ángulos de confort de miembros superiores Objetivo: Establecer las recomendaciones basadas en la evidencia de las intervenciones en salud para los Desórdenes Musculoesqueléticos (DME) en el trabajador avícola. Metodología: Se realizó una revisión de la literatura de los estudios primarios publicados en las bases de datos Medline, Scient Direct y Scielo desde 1990. Los artículos se clasificaron de acuerdo con: el tipo de estudio, la calidad de éste y el nivel de evidencia que aportaba. Resultados: Dentro de las recomendaciones de la evidencia disponible para el manejo integral de los pacientes de la industria avícola con riesgos o eventos asociados a DME se encuentran las siguientes: 1) incorporar un enfoque sistémico en la atención a dichos trabajadores, 2) incluir aspectos psicosociales en la identificación y explicación de los riesgos y eventos en salud, 3) permitir los descansos, microrupturas y pautas para el ejercicio, 4) facilitar la rotación y ampliación de puestos de trabajo, 5) mejorar las herramientas de trabajo - especialmente el corte de los cuchillos. Conclusiones: Las intervenciones descritas en la presente revisión, apuntan hacia el mejoramiento de la incidencia y la prevalencia de los DMS, la disminución de incapacidad temporal y definitiva por los DMS, el mejoramiento en la producción industrial y la reducción de costos tanto económicos como humanos. Sin embargo, se debe plantear la necesidad de continuar impulsando el desarrollo de investigaciones y estudios que permitan tener mayores elementos de juicio para poder realizar recomendaciones a los tipos de intervenciones propuestas. A pesar de lo anterior, las intervenciones en salud para los trabajadores de la industria avícola deben ser enfocadas desde la prestación integral de los servicios de salud.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Drosophila suzukii is a primary insect pest that causes direct damage to fruits with a thin epidermis such as strawberries, cherries and blueberries. In strawberry fields, the co-occurrence of D. suzukii and Zaprionus indianus has increased production losses. This study evaluated the toxicities and effects of insecticidal baits to control adults and larvae of both D. suzukii and Z. indianus . RESULTS: Organophosphate (dimethoate and malathion), spinosyn (spinosad and spinetoram), pyrethroid (lambda-cyhalothrin) and diamide (cyantraniliprole) insecticides exhibited high toxicity to both adults and larvae of D. suzukii and Z. indianus (mortality > 80%) in topical and dip bioassays. However, when the insecticides were mixed with a feeding attractant, a positive effect was observed only for adults of D. suzukii . Insecticides containing neonicotinoids (acetamiprid and thiamethoxam) and pyrolle (chlorfenapyr) caused intermediate mortality to adults of D. suzukii (40?60%) and low mortality for Z. indianus (mortality < 23%); however, these compounds reduced the larval infestation of the two species by 55?86%. Botanical (azadirachtin) and sulphur insecticides exhibited low toxicity (mortality < 40%) on adults and larvae of both species. CONCLUSION: Dimethoate, malathion, spinosad, spinetoram, lambda-cyhalothrin and cyantraniliprole are highly toxic to both larvaeandadultsof D. suzukii and Z.indianus .Theuseoftoxicbaitsforadultsof D. suzukii couldbeanalternativeinmanagement of this species. © 2016 Society of Chemical Industry Keywords: spotted-wing drosophila; fig fly; chemical control; strawberry; toxic bait; pest control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Drosophila suzukii is a primary insect pest that causes direct damage to fruits with a thin epidermis such as strawberries, cherries and blueberries. In strawberry fields, the co-occurrence of D. suzukii and Zaprionus indianus has increased production losses. This study evaluated the toxicities and effects of insecticidal baits to control adults and larvae of both D. suzukii and Z. indianus . RESULTS: Organophosphate (dimethoate and malathion), spinosyn (spinosad and spinetoram), pyrethroid (lambda-cyhalothrin) and diamide (cyantraniliprole) insecticides exhibited high toxicity to both adults and larvae of D. suzukii and Z. indianus (mortality > 80%) in topical and dip bioassays. However, when the insecticides were mixed with a feeding attractant, a positive effect was observed only for adults of D. suzukii . Insecticides containing neonicotinoids (acetamiprid and thiamethoxam) and pyrolle (chlorfenapyr) caused intermediate mortality to adults of D. suzukii (40?60%) and low mortality for Z. indianus (mortality < 23%); however, these compounds reduced the larval infestation of the two species by 55?86%. Botanical (azadirachtin) and sulphur insecticides exhibited low toxicity (mortality < 40%) on adults and larvae of both species. CONCLUSION: Dimethoate, malathion, spinosad, spinetoram, lambda-cyhalothrin and cyantraniliprole are highly toxic to both larvaeandadultsof D. suzukii and Z.indianus .Theuseoftoxicbaitsforadultsof D. suzukii couldbeanalternativeinmanagement of this species. © 2016 Society of Chemical Industry Keywords: spotted-wing drosophila; fig fly; chemical control; strawberry; toxic bait; pest control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Engine developers are putting more and more emphasis on the research of maximum thermal and mechanical efficiency in the recent years. Research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting exhaust emissions limits. These new technologies require more complex engine control units. The sound emitted from a mechanical system encloses many information related to its operating condition and it can be used for control and diagnostic purposes. The thesis shows how the functions carried out from different and specific sensors usually present on-board, can be executed, at the same time, using only one multifunction sensor based on low-cost microphone technology. A theoretical background about sound and signal processing is provided in chapter 1. In modern turbocharged downsized GDI engines, the achievement of maximum thermal efficiency is precluded by the occurrence of knock. Knock emits an unmistakable sound perceived by the human ear like a clink. In chapter 2, the possibility of using this characteristic sound for knock control propose, starting from first experimental assessment tests, to the implementation in a real, production-type engine control unit will be shown. Chapter 3 focus is on misfire detection. Putting emphasis on the low frequency domain of the engine sound spectrum, features related to each combustion cycle of each cylinder can be identified and isolated. An innovative approach to misfire detection, which presents the advantage of not being affected by the road and driveline conditions is introduced. A preliminary study of air path leak detection techniques based on acoustic emissions analysis has been developed, and the first experimental results are shown in chapter 4. Finally, in chapter 5, an innovative detection methodology, based on engine vibration analysis, that can provide useful information about combustion phase is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Choosing natural enemies to suppress pest population has been for a long the key of biological control. Overtime the term biological control has also been applied to the use of suppressive soils, bio-disinfection and biopesticides. Biological control agents (BCA) and natural compounds, extracted or fermented from various sources, are the resources for containing phytopathogens. BCA can act through direct antagonism mechanisms or inducing hypovirulence of the pathogen. The first part of the thesis focused on mycoviruses infecting phytopathogenic fungi belonging to the genus Fusarium. The development of new approaches capable of faster dissecting the virome of filamentous fungi samples was performed. The semiconductor-based sequencer Ion Torrent™ and the nanopore-based sequencer MinION have been exploited to analyze DNA and RNA referable to viral genomes. Comparison with GeneBank accessions and sequence analysis allowed to identify more than 40 putative viral species, some of these mycovirus genera have been studied as inducers of hypovirulence in several phytopathogenic fungi, therefore future works will focus on the comparison of the morphology and physiology of the fungal strain infected and cured by the viruses identified and their possible use as a biocontrol agent. In a second part of the thesis the potential of botanical pesticides has been evaluated for the biocontrol of phloem limited phytopathogens such as phytoplasmas. The only active compounds able to control phytoplasmas are the antibiotic oxytetracyclines and in vitro direct and fast screening of new antimicrobials compounds on media is almost impossible due to the difficulty to culture phytoplasmas. For this reason, a simple and reliable screening method was developed to evaluate the effects of antimicrobials directly on phytoplasmas by an “ex-vivo” approach. Using scanning electron microscopy (SEM) in parallel with molecular tools (ddRT-PCR), the direct activity of tetracyclines on phytoplasma cells was verified, identifying also a promising compound showing similar activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is the investigation of the Mode-I fracture mechanics parameters of quasi-brittle materials to shed light onto the influence of the width and size of the specimen on the fracture response of notched beams. To further the knowledge on the fracture process, 3D digital image correlation (DIC) was employed. A new method is proposed to determine experimentally the critical value of the crack opening, which is then used to determine the size of the fracture process zone (FPZ). In addition, the Mode-I fracture mechanics parameters are compared with the Mode-II interfacial properties of composites materials that feature as matrices the quasi-brittle materials studied in Mode-I conditions. To investigate the Mode II fracture parameters, single-lap direct shear tests are performed. Notched concrete beams with six cross-sections has been tested using a three-point bending (TPB) test set-up (Mode-I fracture mechanics). Two depths and three widths of the beam are considered. In addition to concrete beams, alkali-activated mortar beams (AAMs) that differ by the type and size of the aggregates have been tested using the same TPB set-up. Two dimensions of AAMs are considered. The load-deflection response obtained from DIC is compared with the load-deflection response obtained from the readings of two linear variable displacement transformers (LVDT). Load responses, peak loads, strain profiles along the ligament from DIC, fracture energy and failure modes of TPB tests are discussed. The Mode-II problem is investigated by testing steel reinforced grout (SRG) composites bonded to masonry and concrete elements under single-lap direct shear tests. Two types of anchorage systems are proposed for SRG reinforced masonry and concrete element to study their effectiveness. An indirect method is proposed to find the interfacial properties, compare them with the Mode-I fracture properties of the matrix and to model the effect of the anchorage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cable-driven parallel robots offer significant advantages in terms of workspace dimensions and payload capability. They are attractive for many industrial tasks to be performed on a large scale, such as handling and manufacturing, without a substantial increase in costs and mechanical complexity with respect to a small-scale application. However, since cables can only sustain tensile stresses, cable tensions must be kept within positive limits during the end-effector motion. This problem can be managed by overconstraining the end-effector and controlling cable tensions. Tension control is typically achieved by mounting a load sensor on all cables, and using specific control algorithms to avoid cable slackness or breakage while the end-effector is controlled in a desired position. These algorithms require multiple cascade control loops and they can be complex and computationally demanding. To simplify the control of overconstrained cable-driven parallel robots, this Thesis proposes suitable mechanical design and hybrid control strategies. It is shown how a convenient design of the cable guidance system allows kinematic modeling to be simplified, without introducing geometric approximations. This guidance system employs swiveling pulleys equipped with position and tension sensors and provides a parallelogram arrangement of cables. Furthermore, a hybrid force/position control in the robot joint space is adopted. According to this strategy, a particular set of cables is chosen to be tension-controlled, whereas the other cables are length-controlled. The force-controlled cables are selected based on the computation of a novel index called force-distribution sensitivity to cable-tension errors. This index aims to evaluate the maximum expected cable-tension error in the length-controlled cables if a unit tension error is committed in the force-controlled cables. In practice, the computation of the force-distribution sensitivity allows determining which cables are best to be force-controlled, to ensure the lowest error in the overall force distribution when a hybrid force/position joint-space strategy is used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nowadays, there is a boom in the use of electrification. Electric vehicles are gaining interest worldwide due to various factors, including climate and environmental awareness. In this thesis, a step-down isolated power supply for electric tractors is investigated, specifically the phase-shifted full-bridge (PSFB) DC-DC with synchronous rectification and zero-voltage switching (ZVS). This converter was selected for its high-power capacity with high efficiency. A 3500 W PSFB converter with peak current control (PCCM) is designed and modeled in MATLAB. The input voltage range is from 550 V to 820 V and the output voltage range is limited to 9 V to 16 V with a maximum output current of 250 A. All components were commercially designed and selected, including magnetics for the high-frequency transformer and inductors, taking into account loss calculations. Zero voltage switching for the lagging leg is achieved at 13% to 100% load. The proven efficiency of the converter is around 90

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work an Underactuated Cable-Driven Parallel Robot (UACDPR) that operates in the three dimensional Euclidean space is considered. The End-Effector has 6 degrees of freedom and is actuated by 4 cables, therefore from a mechanical point of view the robot is defined underconstrained. However, considering only three controlled pose variables, the degree of redundancy for the control theory can be considered one. The aim of this thesis is to design a feedback controller for a point-to-point motion that satisfies the transient requirements, and is capable of reducing oscillations that derive from the reduced number of constraints. A force control is chosen for the positioning of the End-Effector, and error with respect to the reference is computed through data measure of several sensors (load cells, encoders and inclinometers) such as cable lengths, tension and orientation of the platform. In order to express the relation between pose and cable tension, the inverse model is derived from the kinematic and dynamic model of the parallel robot. The intrinsic non-linear nature of UACDPRs systems introduces an additional level of complexity in the development of the controller, as a result the control law is composed by a partial feedback linearization, and damping injection to reduce orientation instability. The fourth cable allows to satisfy a further tension distribution constraint, ensuring positive tension during all the instants of motion. Then simulations with different initial conditions are presented in order to optimize control parameters, and lastly an experimental validation of the model is carried out, the results are analysed and limits of the presented approach are defined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis aims to contribute to innovation in the Urban Air Mobility and Delivery sector and represents a solid starting point for air logistics and its future scenarios. The dissertation focuses on modeling, simulation, and control of a formation of multirotor aircraft for cooperative load transportation, with particular attention to environmental sustainability. First, a simulation and test environment is developed to assess technologies for suspended load stabilization. Starting from the mathematical model of two identical multirotors, formation-flight-keeping and collision-avoidance algorithms are analyzed. This approach guarantees both the safety of the vehicles within the formation and that of the payload, which may be made of people in the very near future. Afterwards, a mathematical model for the suspended load is implemented, as well as an active controller for its stabilization. The key focus of this part is represented by both analysis and control of payload oscillatory motion, by thoroughly investigating load kinetic energy decay. At this point, several test cases were introduced, in order to understand which strategy is the most effective and safe in terms of future applications in the field of air logistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the study and the simulation of two advanced sensorless speed control techniques for a surface PMSM are presented. The aim is to implement a sensorless control algorithm for a submarine auxiliary propulsion system. This experimental activity is the result of a project collaboration with L3Harris Calzoni, a leader company in A&D systems for naval handling in military field. A Simulink model of the whole electric drive has been developed. Due to the satisfactory results of the simulations, the sensorless control system has been implemented in C code for STM32 environment. Finally, several tests on a real brushless machine have been carried out while the motor was connected to a mechanical load to simulate the real scenario of the final application. All the experimental results have been recorded through a graphical interface software developed at Calzoni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of energy homeostasis relies on robust neuronal circuits that regulate food intake and energy expenditure. Although the physiology of these circuits is well understood, the molecular and cellular response of this program to chronic diseases is still largely unclear. Hypothalamic inflammation has emerged as a major driver of energy homeostasis dysfunction in both obesity and anorexia. Importantly, this inflammation disrupts the action of metabolic signals promoting anabolism or supporting catabolism. In this review, we address the evidence that favors hypothalamic inflammation as a factor that resets energy homeostasis in pathological states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.