909 resultados para Differential Inclusions with Constraints
Resumo:
First-year undergraduate engineering students' understanding of the units of factors and terms in first-order ordinary differential equations used in modelling contexts was investigated using diagnostic quiz questions. Few students appeared to realize that the units of each term in such equations must be the same, or if they did, nevertheless failed to apply that knowledge when needed. In addition, few students were able to determine the units of a proportionality factor in a simple equation. These results indicate that lecturers of modelling courses cannot take this foundational knowledge for granted and should explicitly include it in instruction.
Resumo:
In this paper, a new differential evolution (DE) based power system optimal available transfer capability (ATC) assessment is presented. Power system total transfer capability (TTC) is traditionally solved by the repeated power flow (RPF) method and the continuation power flow (CPF) method. These methods are based on the assumption that the productions of the source area generators are increased in identical proportion to balance the load increment in the sink area. A new approach based on DE algorithm to generate optimal dispatch both in source area generators and sink area loads is proposed in this paper. This new method can compute ATC between two areas with significant improvement in accuracy compared with the traditional RPF and CPF based methods. A case study using a 30 bus system is given to verify the efficiency and effectiveness of this new DE based ATC optimization approach.
Resumo:
Dementia with neurofilament inclusions (DNI) is a new disorder characterized clinically by early-onset dementia and histologically by the presence of intraneural inclusions immunopositive for neurofilament antigens but lacking tau and α-synuclein reactivity. We studied the clustering patterns of the neurofilament inclusions (NI) in regions of the temporal lobe in three cases of DNI to determine whether they have the same spatial patterns as inclusions in the tauopathies and α-synucleinopathies. The NI exhibited a clustered distribution (mean size of clusters 400 μm, range 50-800 μm, SD 687.8) in 24/28 of the areas studied. In 22 of these areas, the clusters exhibited a regular distribution along the tissue parallel to the pia mater or alveus. In 3 cortical areas, there was evidence of a more complex pattern in which the NI clusters were aggregated into larger superclusters. In 6 cortical areas, the size of the clusters approximated to those of the cells of origin of the cortico-cortical pathways but in the remaining areas cluster size was smaller than 400 μm. Despite the unique molecular profile of the NI, their spatial patterns are similar to those shown by filamentous neuronal inclusions in the tauopathies and α-synucleinopathies.
Resumo:
The effect of having a fixed differential group delay term in the coarse step method results in a periodic pattern in the inserting a varying DGD term at each integration step, according to a Gaussian distribution. Simulation results are given to illustrate the phenomenon and provide some evidence about its statistical nature.
Resumo:
The laminar distribution of ballooned neurons (BN) and tau positive neurons with inclusions (tau+ neurons) was studied in the frontal and temporal cortex in twelve patients with corticobasal degeneration (CBD). In the majority of brain areas, the density of BN and tau+ neurons was maximal in the lower and upper cortical laminae respectively. The densities of tau+ neurons in the upper and lower cortex were positively correlated. In the majority of brain areas, however, no correlations were observed between the densities of BN and tau+ neurons. The laminar distribution of the BN may reflect the degeneration of the feedback cortico-cortical and/or the efferent cortical pathways. By contrast, the distribution of the tau+ neurons may reflect the degeneration of the feed-forward cortico-cortical pathways. In addition, BN and tau+ neurons may arise as a result of distinct pathological processes.
Resumo:
Mutations of the progranulin (GRN) gene are a major cause of familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43 kDa (TDP-43) proteinopathy (FTLD-TDP). We studied the spatial patterns of TDP-43 immunoreactive neuronal cytoplasmic inclusions (NCI) and neuronal intranuclear inclusions (NII) in histological sections of the frontal and temporal lobe in eight cases of FTLD-TDP with GRN mutation using morphometric methods and spatial pattern analysis. In neocortical regions, the NCI were clustered and the clusters were regularly distributed parallel to the pia mater; 58% of regions analysed exhibiting this pattern. The NII were present in regularly distributed clusters in 35% of regions but also randomly distributed in many areas. In neocortical regions, the sizes of the regular clusters of NCI and NII were 400-800 µm, approximating to the size of the modular columns of the cortico-cortical projections, in 31% and 36% of regions respectively. The NCI and NII also exhibited regularly spaced clustering in sectors CA1/2 of the hippocampus and in the dentate gyrus. The clusters of NCI and NII were not spatially correlated. The data suggest degeneration of the cortico-cortical and cortico-hippocampal pathways in FTLD-TDP with GRN mutation, the NCI and NII affecting different clusters of neurons.
Resumo:
Differential perception of innovation is a research area which has been advocated as a suitable topic for study in recent years. It developed from the problems encountered within earlier perception of innovation studies which sought to establish what characteristics of an innovation affected the ease of its adoption. While some success was achieved In relating perception of innovation to adoption behaviour, variability encountered Within groups expected - to fercelve innovation similarly suggested that the needs and experiences of the potential adopter were significantly affecting the research findings. Such analysis being supported by both sociological and psychological perceptual research. The present study sought to identify the presence of differential perception of innovation and explore the nature of the process. It was decided to base the research in an organisational context and to concentrate upon manufacturing innovation. It has been recognised that such adoption of technological innovation is commonly the product of a collective decision-making process, involving individuals from a variety of occupational backgrounds, both in terms of occupational speciality and level within the hierarchy. Such roles appeared likely to significantly influence perception of technological innovation, as gathered through an appropriate measure and were readily identifiable. Data vas collected by means of a face-to-face card presentation technique, a questionnaire and through case study material. Differential perception of innovation effects were apparent In the results, many similarities and differences of perception being related to the needs and experiences of the individuals studied. Phenomenological analysis, which recognises the total nature of experience in infiuencing behaviour, offered the best means of explaining the findings. It was also clear that the bureaucratic model of role definition was not applicable to the area studied, it seeming likely that such definitions are weaker under conditions of uncertainty, such as encountered in innovative decision-making.
Resumo:
Neuronal cytoplasmic inclusions (NCI) immunoreactive for transactive response DNA-binding protein (TDP-43) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). We studied the spatial patterns of the TDP-43 immunoreactive NCI in the frontal and temporal cortex of 15 cases of FTLD-TDP. The NCI were distributed parallel to the tissue boundary predominantly in regular clusters 50-400 µm in diameter. In five cortical areas, the size of the clusters approximated to the cells of the cortico-cortical pathways. In most regions, cluster size was smaller than 400 µm. There were no significant differences in spatial patterns between familial and sporadic cases. Cluster size of the NCI was not correlated with disease duration, brain weight, Braak stage, or disease subtype. The spatial pattern of the NCI was similar to that of neuronal inclusions in other neurodegenerative diseases and may reflect a common pattern of degeneration involving the cortico-cortical projections.
Resumo:
When composing stock portfolios, managers frequently choose among hundreds of stocks. The stocks' risk properties are analyzed with statistical tools, and managers try to combine these to meet the investors' risk profiles. A recently developed tool for performing such optimization is called full-scale optimization (FSO). This methodology is very flexible for investor preferences, but because of computational limitations it has until now been infeasible to use when many stocks are considered. We apply the artificial intelligence technique of differential evolution to solve FSO-type stock selection problems of 97 assets. Differential evolution finds the optimal solutions by self-learning from randomly drawn candidate solutions. We show that this search technique makes large scale problem computationally feasible and that the solutions retrieved are stable. The study also gives further merit to the FSO technique, as it shows that the solutions suit investor risk profiles better than portfolios retrieved from traditional methods.
Resumo:
Background - Neural substrates of emotion dysregulation in adolescent suicide attempters remain unexamined. Method - We used functional magnetic resonance imaging to measure neural activity to neutral, mild or intense (i.e. 0%, 50% or 100% intensity) emotion face morphs in two separate emotion-processing runs (angry and happy) in three adolescent groups: (1) history of suicide attempt and depression (ATT, n = 14); (2) history of depression alone (NAT, n = 15); and (3) healthy controls (HC, n = 15). Post-hoc analyses were conducted on interactions from 3 group × 3 condition (intensities) whole-brain analyses (p < 0.05, corrected) for each emotion run. Results - To 50% intensity angry faces, ATT showed significantly greater activity than NAT in anterior cingulate gyral–dorsolateral prefrontal cortical attentional control circuitry, primary sensory and temporal cortices; and significantly greater activity than HC in the primary sensory cortex, while NAT had significantly lower activity than HC in the anterior cingulate gyrus and ventromedial prefrontal cortex. To neutral faces during the angry emotion-processing run, ATT had significantly lower activity than NAT in the fusiform gyrus. ATT also showed significantly lower activity than HC to 100% intensity happy faces in the primary sensory cortex, and to neutral faces in the happy run in the anterior cingulate and left medial frontal gyri (all p < 0.006,corrected). Psychophysiological interaction analyses revealed significantly reduced anterior cingulate gyral–insula functional connectivity to 50% intensity angry faces in ATT v. NAT or HC. Conclusions - Elevated activity in attention control circuitry, and reduced anterior cingulate gyral–insula functional connectivity, to 50% intensity angry faces in ATT than other groups suggest that ATT may show inefficient recruitment of attentional control neural circuitry when regulating attention to mild intensity angry faces, which may represent a potential biological marker for suicide risk.