975 resultados para Desorption
Resumo:
O objetivo principal desta revisão foi reunir informações a respeito da ação de compostos orgânicos produzidos por plantas na disponibilidade de nutrientes nos solos, principalmente sobre os cátions Ca, Mg e K e sobre o ânion fosfato. O sistema de cultivo adotado ocasiona mudanças nas propriedades químicas e físicas do solo, especialmente na disponibilidade de nutrientes e condicionamento físico do solo. Tem-se observado o acúmulo de nutrientes nas camadas superficiais do solo no sistema de semeadura direta, pelo não-revolvimento do solo e pela deposição de resíduos de culturas na superfície. Os ácidos orgânicos provenientes de plantas podem interagir com a fase sólida e ocupar os sítios de adsorção de nutrientes, competindo diretamente com eles e aumentando sua disponibilidade no solo. A adição de resíduos vegetais pode promover, antes da humificação, a elevação do pH, por promover complexação de H e Al com compostos do resíduo vegetal, deixando Ca, Mg e K mais livres em solução, o que pode ocasionar aumento na saturação da CTC por estes cátions de reação básica. Também é normal observar o aumento na disponibilidade de P no solo com a adição de resíduos vegetais, tanto pelo P presente no resíduo como por competição de compostos orgânicos dos resíduos pelos sítios de troca no solo. A persistência dos compostos orgânicos também é fator que tem grande interferência nos processos de sorção/dessorção de cátions e ânions, dependendo da atividade microbiana, da disponibilidade metabólica do substrato carbonado e da sorção aos colóides do solo.
Resumo:
In this work it was synthesized and characterized the cobalt ferrite (CoFe2O4) by two methods: complexation combining EDTA/Citrate and hydrothermal investigating the influence of the synthesis conditions on phase formation and on the crystallite size. The powders were mainly characterized by x-ray diffraction. In specific cases, it was also used scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray fluorescence (XRF) and isotherms of adsorption and desorption of nitrogen (BET method). The study of the crystallite size was based on the interpretation of x-ray diffractograms obtained and estimated by the method of Halder-Wagner-Scherrer and Langford. An experimental design was made in order to assist in quantifying the influence of synthesis conditions on the response variables. The synthesis parameters evaluated in this study were: pH of the reaction medium (8, 9 and 10), the calcination temperature (combined complexation method EDTA/Citrate 600°C, 800°C and 1000°C), synthesis temperature (hydrothermal method 120°C, 140°C and 160°C), calcination time (combined complexation method EDTA/Citrate - 2, 4 and 6 hours) and time of synthesis (hydrothermal method 6, 15 and 24 hours). By the hydrothermal method was possible to produce mesoporous powders with high purity, with an average crystallite size up to 7 nm, with a surface area of 113.44 m²/g in the form of pellets with irregular morphology. By using the method of combined complexation EDTA/Citrate, mesoporous powders were produced with greater purity, crystallite size up to 22nm and 27.95 m²/g of surface area in the form of pellets with a regular morphology of plaques. In the experimental design was found that the hydrothermal method to all the studied parameters (pH, temperature and time) have significant effect on the crystallite size, while to the combined complexation method EDTA/Citrate, only temperature and time were significant
Resumo:
This work studies two methods for drying sunflower grains grown in the western region of Rio Grande do Norte, in the premises of the Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte - IFRN - Campus Apodi. This initiative was made because of the harvested grain during the harvest, being stored in sheds without any control of temperature, humidity etc. Therewith, many physical, chemical and physiological characteristics are compromised and grains lose much quality for oil production as their germination power. Taking into account that most of the stored grain is used for replanting, the studied methods include drying of grains in a thin layer using an oven with air circulation (fixed bed) and drying in a spouted bed. It was studied the drying of grains in natura, i.e., newly harvested. The fixed bed drying was carried out at temperatures of 40, 50, 60 and 70°C. Experiments in spouted bed were performed based on an experimental design, 2² + 3, with three replications at the central point, where the independent variables were grains load (1500, 2000 and 2500 g) and the temperature of the inlet air (70, 80, and 90 °C), obtaining the drying and desorption equilibrium isotherms. Previously, the characteristic curves of the bed were obtained. Both in the fixed bed as in the spouted bed, drying and desorption curves were obtained by weighing the grains throughout the experiments and measurements of water activity, respectively. The grains drying in the spouted bed showed good results with significant reduction of processing time. The models of FICK and PAGE were fitted to the experimental data, models which will represent the drying of grains both in the fixed bed as in the spouted bed. The desorption curves showed no influence of the processing temperature in the hygroscopic characteristics of the grains. The models of GAB, OSWIN and LUIKOV could well represent the desorption isotherms
Resumo:
The city of Natal comprises an area of about 170 km² (65,63 squares miles). The Dunas-Barreiras Aquifer is the most important reservoir of the coastal basin of RN. It is being responsible for the water supplying of about 70% of the population, however, due to the sewage disposal system by cesspools and drains, it is presently affected in a great extent by nitrates contamination. Thus, the present work proposes to research the utilization of contaminated water by nitrates of this fountainhead and find cost of the potable water through the ionic exchange technology. This technology consists in the removal of mineral salts by the exchange of cations for one ion of hydrogen (H+), through the passage of water by cationic resin bed and, secondly, by the exchange of the anions for hydroxyl ions (OH-) through a anionic resin bed. The obtained results have showed the waters derived from fountains, big water holes and shallow wells were microbiologically contaminated, while the waters derived from deep wells (above 70 m 76,58 yards) were free of contamination. Thus, only these ones are suitable to the use of ionic technology. The experiments were conducted with the resin IMAC-HP-555 such as kinetic, thermodynamic, and adsorption by fixed bed studies, being obtained several project variables for the experimental column, as follow: work temperature of 25oC; resin maximum capacity maximum e mean of adsorption ==0,01692 g NO3-1/g R e 0,0110 g NO3-1/g R, respectively. On the experimental column were performed breakthrough tests which pointed for an average ideal average speed of work of 13.2 m / h, with an average efficiency of 45% of adsorption, an optimal concentration of NaCl desorption of 8%, and an ideal desorption time of 80 minutes for the equilibrium conditions of water from the Dunas-Barreiras aquifer. Scale projection for ion-exchange column for denitrification, for these variables, using a computer modeling programme, to project the column of ion exchange ROREX-420/2000, obtained a cost for the drinking water denitrified by this system of R$ 0,16 / m3
Resumo:
Seeking a greater appreciation of cheese whey was developed to process the hydrogenation of lactose for the production of lactitol, a polyol with high added value, using the catalyst Ni / activated carbon (15% and 20% nickel), the nitride Mo2N, the bimetallic carbide Ni-Mo/ activated carbon and carbide Mo2C. After synthesis, the prepared catalysts were analyzed by MEV, XRD, laser granulometry and B.E.T. The reactor used in catalytic hydrogenation of lactose was the type of bed mud with a pressure (68 atm), temperature (120 oC) and stirring speed (500 rpm) remained constant during the experiments. The system operated in batch mode for the solid and liquid and semi-continuous to gas. Besides the nature of the catalyst, we studied the influence of pH of reaction medium for Mo2C carbide as well as evaluating the character of the protein inhibitor and chloride ions on the activity of catalysts Ni (20%)/Activated Carbon and bimetallic carbide Ni-Mo/Activated Carbon. The decrease in protein levels was performed by coagulation with chitosan and adsorption of chloride ions was performed by ion exchange resins. In the process of protein adsorption and chloride ions, the maximum percentage extracted was about 74% and 79% respectively. The micrographs of the powders of Mo2C and Mo2N presented in the form of homogeneous clusters, whereas for the catalysts supported on activated carbon, microporous structure proved impregnated with small particles indicating the presence of metal. The results showed high conversion of lactose to lactitol 90% for the catalyst Ni (20%)/Activated Carbon at pH 6 and 46% for the carbide Mo2C pH 8 (after addition of NH4OH) using the commercial lactose. Monitoring the evolution of the constituents present in the reaction medium was made by liquid chromatography. A kinetic model of heterogeneous Langmuir Hinshelwood type was developed which showed that the estimated constants based catalysts promoted carbide and nitride with a certain speed the adsorption, desorption and production of lactitol
Resumo:
Amorphous silica-alumina and modified by incipient impregnation of iron, nickel, zinc and chromium were synthetized in oxide and metal state and evaluated as catalysts for the chloromethane conversion reaction. With known techniques their textural properties were determined and dynamics techniques in programmed temperature were used to find the acid properties of the materials. A thermodynamic model was used to determine the adsorption and desorption capacity of chloromethane. Two types of reactions were studied. Firstly the chloromethane was catalytically converted to hydrocarbons (T = 300 450 oC e m = 300 mg) in a fixed bed reactor with controlled pressure and flow. Secondly the deactivation of the unmodified support was studied (at 300 °C and m=250 g) in a micro-adsorver provided of gravimetric monitoring. The metal content (2,5%) and the chloromethane percent of the reagent mixture (10% chloromethane in nitrogen) were fixed for all the tests. From the results the chloromethane conversion and selectivity of the gaseous products (H2, CH4, C3 and C4) were determined as well as the energy of desorption (75,2 KJ/mol for Ni/Al2O3-SiO2 to 684 KJ/mol for the Zn/Al2O3-SiO2 catalyst) considering the desorption rate as a temperature function. The presence of a metal on the support showed to have an important significance in the chloromethane condensation. The oxide class catalyst presented a better performance toward the production of hydrocarbons. Especial mention to the ZnO/Al2O3-SiO2 that, in a gas phase basis, produced C3 83 % max. and C4 63% max., respectively, in the temperature of 450 oC and 20 hours on stream. Hydrogen was produced exclusively in the FeO/Al2O3-SiO2 catalysts (15 % max., T = 550 oC and 5,6 h on stream) and Ni/SiO2-Al2O3 (75 % max., T = 400 oC and 21,6 h on stream). All the catalysts produced methane (10 à 92 %), except for Ni/Al2O3-SiO2 and CrO/Al2O3-SiO2. In the deactivation study two models were proposed: The parallel model, where the product production competes with coke formation; and the sequential model, where the coke formation competes with the product desorption dessorption step. With the mass balance equations and the mechanism proposed six parameters were determined. Two kinetic parameters: the hydrocarbon formation constant, 8,46 10-4 min-1, the coke formation, 1,46 10-1 min-1; three thermodynamic constants (the global, 0,003, the chloromethane adsorption 0,417 bar-1, the hydrocarbon adsorption 2,266 bar-1), and the activity exponent of the coke formation (1,516). The model was reasonable well fitted and presented a satisfactory behavior in relation with the proposed mechanism
Utilização de microemulsões como agentes modificadores de superfícies para remoção de íons metálicos
Resumo:
The heavy metals are used in many industrial processes and when discharged to the environment can cause harmful effects to human, plants and animals. The adsorption technology has been used as an effective methodology to remove metallic ions. The search for new adsorbents motivated the development of this research, accomplished with the purpose of removing Cr (III) from aqueous solutions. Diatomite, chitosan, Filtrol 24TM and active carbon were used as adsorbents. To modify the adsorbent surface was used a bicontinuous microemulsion composed by water (25%), kerosene (25%), saponified coconut oil (10%) and as co-surfactant isoamyl or butyl alcohols (40%). With the objective of developing the best operational conditions the research started with the surfactant synthesis and after that the pseudo-ternary diagrams were plotted. It was decided to use the system composed with isoamyl alcohol as co-surfactant due its smallest solubility in water. The methodology to impregnate the microemulsion on the adsorbents was developed and to prepare each sample was used 10 g of adsorbent and 20 mL of microemulsion. The effect of drying time and temperature was evaluated and the best results were obtained with T = 65 ºC and t = 48 h. After evaluating the efficiency of the tested adsorbents it was decided to use chitosan and diatomite. The influence of the agitation speed, granule size, heavy metal synthetic solution concentration, pH, contact time between adsorbent and metal solution, presence or not of NaCl and others metallic ions in the solution (copper and nickel) were evaluated. The adsorption isotherms were obtained and Freundlich and Langmuir models were tested. The last one correlated better the data. With the purpose to evaluate if using a surfactant solution would supply similar results, the adsorbent surface was modified with this solution. It was verified that the adsorbent impregnated with a microemulsion was more effective than the one with a surfactant solution, showing that the organic phase (kerosene) was important in the heavy metal removal process. It was studied the desorption process and verified that the concentrated minerals acids removed the chromium from the adsorbent surface better than others tested solutions. The treatment showed to be effective, being obtained an increase of approximately 10% in the chitosan s adsorption capacity (132 mg of Cr3+ / g adsorbent), that was already quite efficient, and for diatomite, that was not capable to remove the metal without the microemulsion treatment, it was obtained a capacity of 10 mg of Cr3+ / g adsorbent, checking the applied treatment effectiveness
Resumo:
The present work has as objective the knowledge of the process of drying of the cephalothorax of shrimp to give support the industry to make possible the use of this byproduct. In this sense, the process conditions in this tray dryer and spouted bed were analyzed. With these results, it was projected and constructs a dryer with specific characteristics for the drying of the cephalothorax. The desorption isotherms were obtained by the dynamic method in the temperatures of 20, 35 and 50º C and in the interval of 10-90% of relative humidity. It was observed that the product in form of powder can be conserved with larger stability for lower relative humidity to 40%. The curves of drying of the dryer of fixed bed were adjusted for the models: single exponential, biparametric exponential and Page. The model biparametric exponential more adequately described all the drying conditions studied. The tests carry out in spouted bed showed high drying rate for the material in the paste form in beds active dynamicly-fluid, provely the necessity of a feeding in shorter intervals of time to increase the thermal efficiency of the process. The projected dryer, be considered the obtained results, it was a rotary dryer with inert bed, feed co-current, discharge in cyclone to take place the separation gas-solid, and feed carry out in intervals of 2 minutes. The optimization of the equipment projected it was accomplished used the complete factorial experimental design 24, this had as independent variables temperature velocity of the air, feed flow rate and encapsulated concentration (albumin), as variables answers the thermal efficiency, the moisture content of obtained powder, total time of test and the efficiency of production of powder in several points of processing. The results showed that the rotary dryer with inert bed can present, also, good results if applied industrially
Resumo:
Emissions of CO2 in the atmosphere have increased successively by various mechanisms caused by human action, especially as fossil fuel combustion and industrial chemical processes. This leads to the increase in average temperature in the atmosphere, which we call global warming. The search for new technologies to minimize environmental impacts arising from this phenomenon has been investigated. The capture of CO2 is one of the alternatives that can help reduce emis ions of greenhouse gases. The CO2 can be captured through the process of selective adsorption using adsorbents for this purpose. Were synthesized by hydrothermal method, materials of the type MCM-41 and Al-MCM-41 in the molar ratio Si / Al equal to 50. The synthesis of gels were prepared from a source of silicon, sodium, water and aluminum in the case of Al-MCM-41. The period of synthesis of the materials was 5 days in autoclave at 100°C. After that time materials were filtered, washed and dried in greenhouse at 100 º C for 4 hours and then calcined at 450 º C. Then the calcined material was functionalized with the Di-isopropylamine (DIPA) by the method of wet impregnation. We used 0.5 g of material mesopores to 3.5 mL of DIPA. The materials were functionalized in a closed container for 24 hours, and after this period were dried at brackground temperature for 2 hours. Were subsequently subjected to heat treatment at 250°C for 1 hour. These materials were used for the adsorption of CO2 and were characterized by XRD, FT-IR, BET / BJH, SEM, EDX and TG / DTG. Tests of adsorption of CO2 was carried out under the following conditions: 100 mg of adsorbent, temperature of 75°C under flow of 100 mL/min of CO2 for 2 hours. The desorption of CO2 was carried out by thermogravimetry from ambient temperature to 900ºC under flow of 25 mL min of He and a ratio of 10ºC/min. The difratogramas X-ray for the synthesized samples showed the characteristic peaks of MCM-41, showing that the structure of it was obtained. For samples functionalized there was a decrease of the intensities of these peaks, with a consequent reduction in the structural ordering of the material. However, the structure was preserved mesopores. The adsorption tests showed that the functionalized MCM-41 is presented as a material promising adsorbent, for CO2 capture, with a loss of mass on the desorption CO2 of 7,52%, while that in Al-MCM- 41 functionalized showed no such loss
Resumo:
In present work, mesoporous materials of the M41S family were synthesized, which were discovered in the early 90s by researchers from Mobil Oil Corporation, thus allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal array of mesopores with pore diameters ranging from 2 to 10 nm and a high surface area, enabling it to become very promising for the use as a catalyst in the refining of oil in the catalytic cracking process, since the mesopores facilitate the access of large hydrocarbon molecules, thereby increasing the production of light products, that are in high demand in the market. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more beneficial for application in the petrochemical industry. The mesoporous materials MCM-41 and Al-MCM-41 (ratio Si / Al = 50) were synthesized through the hydrothermal method, starting with silica gel, NaOH and distilled water. CTMABr was used as template, for structural guiding. In Al-MCM-41 the same reactants were used, with the adding of pseudoboehmite (as a source of aluminum) in the synthesis gel. The syntheses were carried out over a period of four days with a daily adjustment of pH. The optimum conditions of calcination for the removal of the organic template (CTMABr) were discovered through TG / DTG and also through analysis by XRD, FTIR and Nitrogen Adsorption. It was found that both the method of hydrothermal synthesis and calcination conditions of the studies based on TG were promising for the production of mesoporous materials with a high degree of hexagonal array. The acidic properties of the materials were determined by desorption of n-butylamine via thermogravimetry. One proved that the addition of aluminum in the structure of MCM-41 promoted an increase in the acidity of the catalyst. To check the catalytic activity of these materials, a sample of Atmospheric Residue (RAT) that is derived from atmospheric distillation of oil from the Pole of Guamaré- RN was used. This sample was previously characterized by various techniques such as Thermogravimetry, FTIR and XRF, where through thermal analysis of a comparative study between the thermal degradation of the RAT, the RAT pyrolysis + MCM-41 and RAT + Al- MCM-41. It was found that the Al-MCM-41 was most satisfactory in the promotion of a catalytic effect on the pyrolysis of the RAT, as the cracking of heavy products in the waste occurred at temperatures lower than those observed for the pyrolysis with MCM-41, and thereby also decreasing the energy of activation for the process and increasing the rates of conversion of residue into lighter products
Resumo:
The catalytic processes play a vital role in the worldwide economy, a business that handles about US$ 13 billion per year because the value of products depends on the catalytic processes, including petroleum products, chemicals, pharmaceuticals, synthetic rubbers and plastics, among others. The zeolite ZSM-5 is used as catalyst for various reactions in the area petrochemical, petroleum refining and fine chemicals, especially the reactions of cracking, isomerization, alkylation, aromatization of olefins, among others. Many researchers have studied the hydrothermal synthesis of zeolite ZSM-5 free template and they obtained satisfactory results, so this study aims to evaluate the hydrothermal synthesis and the physicochemical properties of ZSM-5 with the presence and absence of template compared with commercial ZSM-5. The methods for hydrothermal synthesis of zeolite ZSM-5 are of scientific knowledge, providing the chemical composition required for the formation of zeolitic structure in the presence and absence of template. Samples of both zeolites ZSM-5 in protonic form were obtained by heat treatment and ion exchange, according to procedures reported in the literature. The sample of commercial ZSM-5 was acquired by the company Sentex Industrial Ltda. All samples were characterized by XRD, SEM, FTIR, TG / DTG / DSC, N2 adsorption and desorption and study of acidity by thermo-desorption of probe molecule (n-butylamine), in order to understand their physicochemical properties. The efficiency of the methods applied in this work and reported in the literature has been proved by well-defined structure of ZSM-5. According as the evaluation of physicochemical properties, zeolite ZSM-5 free template becomes promising for application in the refining processes or use as catalytic support, since its synthesis reduces environmental impacts and production costs
Resumo:
This study proposes to find a biodiesel through transesterification of rice bran oil with KI/Al2O3 checking the influence of two types of alumina (Amorphous and Crystalline) for conversion into methyl esters. The catalyst was synthesized by the wet impregnation method. Adding 30 mL of 35% KI(aq.) in 10 g of alumina, under stirring at 80 °C for 3 hours. The reaction conditions used in this study were optimized, with a molar ratio methanol:oil of 15:1, 8 h of reaction time and reflux temperature. The catalyst amount was varied in the range of 1 to 5 % wt. The solid catalysts materials were analyzed by: x-ray diffraction (XRD), thermogravimetry (TG), N2 adsorption/desorption, scanning electron microscopy (SEM) and basicity, for the identification of its structure and composition, verifying the presence of basic sites. The results showed that Al2O3(A) presents an amorphous structure, high surface area and a better catalytic activity, in relation to the catalyst synthesized with Al2O3(C) support that proved to have a more crystalline structure, having as well, a lesser surface area, enabling difficulties for the incorporation of active sites. The obtained biodiesel with 5% wt. KI/Al2O3(A) presented physicochemical properties within the standards specified by the Resolution No 7/2008 ANP and obtained the best reaction yield with 95.2%, according to quantitative measurement from the TG, which showed 96.2% conversion into methyl esters. It was furthermore found that with the increasing amount of the quantity of the catalyst in the reaction, there was also an increase in the ester content obtained. The specific mass and the kinematic viscosity were reduced with the increase of the amount of quantity of the catalyst, indicating an increase in the conversion of triglycerides
Resumo:
Volatile Organic Compounds are pollutants coming mainly from activities that use fossil fuels. Within this class are the BTEX (benzene, toluene, ethylbenzene and xylenes) compounds that are considered hazardous. Among the various existing techniques for degradation of pollutants, there is advanced oxidation using H2O2 generating hidoxil radical ( OH). In this work, the mesoporous material of MCM-41 was synthesized by hydrothermal method and then was used as support, the impregnation of titanium by the method of synthesis with excess solvent to obtain the catalyst Ti-MCM-41. The catalyst was used in the reaction catalyzed removal of BTEX in water using H2O2 as oxidant. The materials were characterized by: XRD, TG/DTG, FTIR, nitrogen adsorption-desorption and FRX-EDX, in order to verify the method of impregnation of the mesoporous titanium support was effective. Catalytic tests were carried out in reactors of 20 mL containing BTEX (100.0 μg/L), H2O2 (2.0 M) and Ti-MCM-41 (2.0 g/L) in acid medium. The reaction occurred for 5 h at 60 °C and analysis were performed by gas chromatography with photoionization detector and static headspace sampler. The characterizations have proven the effectiveness of the synthesis method used and the incorporation of titanium lt in the support. The catalytic tests showed satisfactory results with conversion of more than 95 % for the studied compounds, where the catalyst 48% Ti-MCM-41 showed a higher removal efficiency of the compounds under study
Resumo:
The present investigation reports the synthesis, characterization, and adsorption properties of a new nanomaterial based on organomodified silsesquioxane nanocages. The adsorption isotherms for CuCl,, CoCl2, ZnCl2, NiCl2, and FeCl3 from ethanol solutions were performed by using the batchwise method. The equilibrium condition is reached very quickly (3 min), indicating that the adsorption sites are well exposed. The results obtained in the flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 2 g of the nanomaterial, using 5 mL of 1.0 mol L-1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the development of a method for preconcentration and determination of metal ions at trace level in commercial ethanol, used as fuel for car engines. The values determined by recommended method for plants 1, 2, and 3 indicated an amount of copper of 51, 60, and 78 mu g L-1, and of iron of 2, 15, and 13 mu g L-1, respectively. These values are very close to those determined by conventional analytical methods. Thus, these similar values demonstrated the accuracy of the determination by recommended method.
Resumo:
Combating pollution of soils is a challenge that has concerned researchers from different areas and motivated the search for technologies that aim the recovery of degraded soils. Literature shows numerous processes that have been proposed with the intent of remediating soils contaminated by oils and other by-products of the oil industry, considering that the processes available have, generally, high operating costs, this work proposes a costeffective alternative to the treatment of Diesel-contaminated soils. The washing solutions were prepared using water as aqueous phase, the saponified coconut oil (OCS) as surfactant and n-butanol as co-surfactant. In this study, the soil was characterized by physical and chemical analyses. The study of diesel desorption from the soil was held in bath, using hexane and washing solutions, which had 10 and 20 wt.% active matter (AM - co-surfactant/surfactants) respectively. The study of the influence of active matter concentration and temperature in bath agitated used an experimental planning. The experiment also developed a system of percolation in bed to wash the soil and studied the influence of the concentration of active substance and volume of washing solution using an experimental planning. The optimal times to achieve hexane extraction were 30 and 180 min, while the best results using a 10% AM was 60 min and using a 20% AM was 120 min. The results of the experimental planning on bath showed that the maximum diesel removal was obtained when at a 20 wt.% of AM and under 50 °C, removing 99.92% of the oil. As for experiments in the system of percolation soil bed, the maximum diesel removal was high when the volume of the washing solution was of 5 L and the concentration of 20% AM. This experiment concluded that the concentration of AM and the temperature were vital to bath experiments for diesel removal, while in the system of percolation soil bed only concentration of AM influenced the soil remediation