798 resultados para Data-Intensive Science
Resumo:
The widespread use of service-oriented architectures (SOAs) and Web services in commercial software requires the adoption of development techniques to ensure the quality of Web services. Testing techniques and tools concern quality and play a critical role in accomplishing quality of SOA based systems. Existing techniques and tools for traditional systems are not appropriate to these new systems, making the development of Web services testing techniques and tools required. This article presents new testing techniques to automatically generate a set of test cases and data for Web services. The techniques presented here explore data perturbation of Web services messages upon data types, integrity and consistency. To support these techniques, a tool (GenAutoWS) was developed and applied to real problems. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
P>In the context of either Bayesian or classical sensitivity analyses of over-parametrized models for incomplete categorical data, it is well known that prior-dependence on posterior inferences of nonidentifiable parameters or that too parsimonious over-parametrized models may lead to erroneous conclusions. Nevertheless, some authors either pay no attention to which parameters are nonidentifiable or do not appropriately account for possible prior-dependence. We review the literature on this topic and consider simple examples to emphasize that in both inferential frameworks, the subjective components can influence results in nontrivial ways, irrespectively of the sample size. Specifically, we show that prior distributions commonly regarded as slightly informative or noninformative may actually be too informative for nonidentifiable parameters, and that the choice of over-parametrized models may drastically impact the results, suggesting that a careful examination of their effects should be considered before drawing conclusions.Resume Que ce soit dans un cadre Bayesien ou classique, il est bien connu que la surparametrisation, dans les modeles pour donnees categorielles incompletes, peut conduire a des conclusions erronees. Cependant, certains auteurs persistent a negliger les problemes lies a la presence de parametres non identifies. Nous passons en revue la litterature dans ce domaine, et considerons quelques exemples surparametres simples dans lesquels les elements subjectifs influencent de facon non negligeable les resultats, independamment de la taille des echantillons. Plus precisement, nous montrons comment des a priori consideres comme peu ou non-informatifs peuvent se reveler extremement informatifs en ce qui concerne les parametres non identifies, et que le recours a des modeles surparametres peut avoir sur les conclusions finales un impact considerable. Ceci suggere un examen tres attentif de l`impact potentiel des a priori.
Resumo:
We review some issues related to the implications of different missing data mechanisms on statistical inference for contingency tables and consider simulation studies to compare the results obtained under such models to those where the units with missing data are disregarded. We confirm that although, in general, analyses under the correct missing at random and missing completely at random models are more efficient even for small sample sizes, there are exceptions where they may not improve the results obtained by ignoring the partially classified data. We show that under the missing not at random (MNAR) model, estimates on the boundary of the parameter space as well as lack of identifiability of the parameters of saturated models may be associated with undesirable asymptotic properties of maximum likelihood estimators and likelihood ratio tests; even in standard cases the bias of the estimators may be low only for very large samples. We also show that the probability of a boundary solution obtained under the correct MNAR model may be large even for large samples and that, consequently, we may not always conclude that a MNAR model is misspecified because the estimate is on the boundary of the parameter space.
Resumo:
In [H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pure Appl. (9) (1983) 73-97.] Brezis and Friedman prove that certain nonlinear parabolic equations, with the delta-measure as initial data, have no solution. However in [J.F. Colombeau, M. Langlais, Generalized solutions of nonlinear parabolic equations with distributions as initial conditions, J. Math. Anal. Appl (1990) 186-196.] Colombeau and Langlais prove that these equations have a unique solution even if the delta-measure is substituted by any Colombeau generalized function of compact support. Here we generalize Colombeau and Langlais` result proving that we may take any generalized function as the initial data. Our approach relies on recent algebraic and topological developments of the theory of Colombeau generalized functions and results from [J. Aragona, Colombeau generalized functions on quasi-regular sets, Publ. Math. Debrecen (2006) 371-399.]. (C) 2009 Elsevier Ltd. All rights reserved.
A robust Bayesian approach to null intercept measurement error model with application to dental data
Resumo:
Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Chemometric methods can contribute to soil research by permitting the extraction of more information from the data. The aim of this work was to use Principal Component Analysis to evaluate data obtained through chemical and spectroscopic methods on the changes in the humification process of soil organic matter from two tropical soils after sewage sludge application. In this case, humic acids extracted from Typic Eutrorthox and Typic Haplorthox soils with and without sewage sludge application for 7 consecutive years were studied. The results obtained for all of the samples and methods showed two clusters: samples extracted from the two soil types. These expected results indicated the textural difference between the two soils was more significant than the differences between treatments (control and sewage sludge application) or between depths. In this case, an individual chemometric treatment was made for each type of soil. It was noted that the characterization of the humic acids extracted from soils with and without sewage sludge application after 7 consecutive years using several methods supplies important results about changes in the humification degree of soil organic matter, These important result obtained by Principal Component Analysis justify further research using these methods to characterize the changes in the humic acids extracted from sewage sludge-amended soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.
Resumo:
This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.
Resumo:
Data mining is a relatively new field of research that its objective is to acquire knowledge from large amounts of data. In medical and health care areas, due to regulations and due to the availability of computers, a large amount of data is becoming available [27]. On the one hand, practitioners are expected to use all this data in their work but, at the same time, such a large amount of data cannot be processed by humans in a short time to make diagnosis, prognosis and treatment schedules. A major objective of this thesis is to evaluate data mining tools in medical and health care applications to develop a tool that can help make rather accurate decisions. In this thesis, the goal is finding a pattern among patients who got pneumonia by clustering of lab data values which have been recorded every day. By this pattern we can generalize it to the patients who did not have been diagnosed by this disease whose lab values shows the same trend as pneumonia patients does. There are 10 tables which have been extracted from a big data base of a hospital in Jena for my work .In ICU (intensive care unit), COPRA system which is a patient management system has been used. All the tables and data stored in German Language database.
Resumo:
In recent years, it has been observed that software clones and plagiarism are becoming an increased threat for one?s creativity. Clones are the results of copying and using other?s work. According to the Merriam – Webster dictionary, “A clone is one that appears to be a copy of an original form”. It is synonym to duplicate. Clones lead to redundancy of codes, but not all redundant code is a clone.On basis of this background knowledge ,in order to safeguard one?s idea and to avoid intentional code duplication for pretending other?s work as if their owns, software clone detection should be emphasized more. The objective of this paper is to review the methods for clone detection and to apply those methods for finding the extent of plagiarism occurrence among the Swedish Universities in Master level computer science department and to analyze the results.The rest part of the paper, discuss about software plagiarism detection which employs data analysis technique and then statistical analysis of the results.Plagiarism is an act of stealing and passing off the idea?s and words of another person?s as one?s own. Using data analysis technique, samples(Master level computer Science thesis report) were taken from various Swedish universities and processed in Ephorus anti plagiarism software detection. Ephorus gives the percentage of plagiarism for each thesis document, from this results statistical analysis were carried out using Minitab Software.The results gives a very low percentage of Plagiarism extent among the Swedish universities, which concludes that Plagiarism is not a threat to Sweden?s standard of education in computer science.This paper is based on data analysis, intelligence techniques, EPHORUS software plagiarism detection tool and MINITAB statistical software analysis.
Resumo:
The Survivability of Swedish Emergency Management Related Research Centers and Academic Programs: A Preliminary Sociology of Science Analysis Despite being a relatively safe nation, Sweden has four different universities supporting four emergency management research centers and an equal and growing number of academic programs. In this paper, I discuss how these centers and programs survive within the current organizational environment. The sociology of science or the sociology of scientific knowledge perspectives should provide a theoretical guide. Yet, scholars of these perspectives have produced no research on these related topics. Thus, the population ecology model and the notion of organizational niche provide my theoretical foundation. My data come from 26 interviews from those four institutions, the gathering of documents, and observations. I found that each institution has found its own niche with little or no competition – with one exception. Three of the universities do have an international focus. Yet, their foci have minimal overlap. Finally, I suggest that key aspects of Swedish culture, including safety, and a need aid to the poor, help explain the extensive funding these centers and programs receive to survive.
Resumo:
Internationally, research on psychiatric intensive care units (PICUs) commonly reportsresults from demographic studies such as criteria for admission, need for involuntary treatment, andthe occurrence of violent behaviour. A few international studies describe the caring aspect of thePICUs based specifically on caregivers’ experiences. The concept of PICU in Sweden is not clearlydefined. The aim of this study is to describe the core characteristics of a PICU in Sweden and todescribe the care activities provided for patients admitted to the PICUs. Critical incident techniquewas used as the research method. Eighteen caregivers at a PICU participated in the study bycompleting a semistructured questionnaire. In-depth interviews with three nurses and two assistantnurses also constitute the data. An analysis of the content identified four categories that characterizethe core of PICU: the dramatic admission, protests and refusal of treatment, escalating behaviours, andtemporarily coercive measure. Care activities for PICUs were also analysed and identified as controlling– establishing boundaries, protecting – warding off, supporting – giving intensive assistance, andstructuring the environment. Finally, the discussion put focus on determining the intensive aspect ofpsychiatric care which has not been done in a Swedish perspective before. PICUs were interpreted asa level of care as it is composed by limited structures and closeness in care.
Resumo:
Background. Through a national policy agreement, over 167 million Euros will be invested in the Swedish National Quality Registries (NQRs) between 2012 and 2016. One of the policy agreement¿s intentions is to increase the use of NQR data for quality improvement (QI). However, the evidence is fragmented as to how the use of medical registries and the like lead to quality improvement, and little is known about non-clinical use. The aim was therefore to investigate the perspectives of Swedish politicians and administrators on quality improvement based on national registry data. Methods. Politicians and administrators from four county councils were interviewed. A qualitative content analysis guided by the Consolidated Framework for Implementation Research (CFIR) was performed. Results. The politicians and administrators perspectives on the use of NQR data for quality improvement were mainly assigned to three of the five CFIR domains. In the domain of intervention characteristics, data reliability and access in reasonable time were not considered entirely satisfactory, making it difficult for the politico-administrative leaderships to initiate, monitor, and support timely QI efforts. Still, politicians and administrators trusted the idea of using the NQRs as a base for quality improvement. In the domain of inner setting, the organizational structures were not sufficiently developed to utilize the advantages of the NQRs, and readiness for implementation appeared to be inadequate for two reasons. Firstly, the resources for data analysis and quality improvement were not considered sufficient at politico-administrative or clinical level. Secondly, deficiencies in leadership engagement at multiple levels were described and there was a lack of consensus on the politicians¿ role and level of involvement. Regarding the domain of outer setting, there was a lack of communication and cooperation between the county councils and the national NQR organizations. Conclusions. The Swedish experiences show that a government-supported national system of well-funded, well-managed, and reputable national quality registries needs favorable local politico-administrative conditions to be used for quality improvement; such conditions are not yet in place according to local politicians and administrators.
Resumo:
The practitioners of bioinformatics require increasing sophistication from their software tools to take into account the particular characteristics that make their domain complex. For example, there is a great variation of experience of researchers, from novices who would like guidance from experts in the best resources to use to experts that wish to take greater management control of the tools used in their experiments. Also, the range of available, and conflicting, data formats is growing and there is a desire to automate the many trivial manual stages of in-silico experiments. Agent-oriented software development is one approach to tackling the design of complex applications. In this paper, we argue that, in fact, agent-oriented development is a particularly well-suited approach to developing bioinformatics tools that take into account the wider domain characteristics. To illustrate this, we design a data curation tool, which manages the format of experimental data, extend it to better account for the extra requirements placed by the domain characteristics, and show how the characteristics lead to a system well suited to an agent-oriented view.