1000 resultados para DIVALENT LANTHANIDE CHEMISTRY
Resumo:
Poly(styrene-acrylic acid)-lanthanide (Ln.PSAA) and poly(ethylene-acrylic acid)-neodymium (NdPEAA) complexes have been prepared and characterized. The infrared and X-ray photoelectron spectra indicate that the lanthanide complexes possess the bidentate carboxylate structure Ln-O-C(R)-O (see structure B in text). The catalytic behavior of the complexes has been described. The catalytic activities of Nd.PSAA and Nd.PEAA are much greater than that of the corresponding low molecular weight catalyst for butadiene polymerization. The activities of various individual lanthanide elements are quite different from one another. Neodymium shows the highest activity. Europium, samarium and the heavy elements exhibit very low or no activities. The cis-1,4 content of the polybutadiene obtained is not affected by different lanthanide elements in the series. The complex with the intermediate content of the functional group has a higher activity than the others. The polymer-supported lanthanide complexes having different constitutions have different catalytic activities. When the molar ratio of lanthanide to the functional group is ca. 0.2, the activity of the complex is in the optimum state. The activity is influenced by the dispersion of the lanthanide metal immobilized on the polymer chain. Catalytic activity can be improved by adding other metals to the catalyst system.
Resumo:
A simple technique for preparation of powder binary fluorides activated with divalent samarium ions is described. The samarium impurity is introduced as samarium trifluoride SmF3 and hydrogen acts as the reducing agent to transform Sm3+ into Sm2+. Using this method, samarium has been stabilized in the divalent state in some fluorides: KMgF3, LiBaF3, BaBeF4, SrMgF4 and BaMgF4. Moreover, BaBeF4, SrMgF4 and BaMgF4 have never been activated with Sm2+ ions up to now. We also find that under the same synthetic conditions samarium can not be stabilized in the divalent state in some fluorides: KCaF3, CaBeF4 and CaMgF4, but the characteristic luminescence of trivalent samarium Sm3+ appears in these matrices. The emission and excitation spectra of samarium (Sm2+ and Sm3+) in these binary fluorides are presented and briefly discussed. The relationship between the oxidation state of samarium and the composition, the structure of matrices is also analyzed.
Resumo:
The infrared spectra of the crystalline solid samples of rare earth(III) dimethylphosphates Ln(DMP)3 (Ln = La, Ce, Nd) in the range 4000-100 cm-1 are discussed. It is shown that the spectra may be treated by dividing Ln(DMP)3 into two parts, an OP(OCH3)2O bridge and a LnO6 distortion octahedron. The absorption bands above 500 cm-1 may be clearly assigned. However, vibrational assignments in the far-infrared region are tentative.
Resumo:
Eight heteropoly blues of bis-2:17 molybdophosphate complexes with Lathanide, i.e., K17H2[Ln(P2Mo17O61)2] . nH2O and K17H4[Ln(P2Mo17O61)2] . nH2O were synthesized and characterized by elemental analyses potentiometric titration, IR, UV, polarography, cyclic voltammetry, X-ray photoelectron spectra X-ray powder diffraction, thermal analyses and ESR. Experimental results show that the properties of these series of heteropoly blues are different from those of their oxidized form, but no great changes in their structures were observed. The ligand P2Mo17O6110- remains alpha2-isomer's configuration.
Resumo:
Reaction of lanthanide trichlorides with two equivalents of sodium t-butylcyclopentadienide in THF gave rise to the bis(t-butylcyclopentadienyl)lanthanide chloride complexes [(Bu(t)Cp)2LnCl]2 (Ln = Pr, Gd, Er), which were characterized by elemental analysis, IR and H-1 NMR spectroscopy. In addition, the crystal structures of [(ButCp)2PrCl]2 (1) and [(ButCp)2GdCl]2 (2) were determined by single crystal X-ray diffraction at room temperature. The coordination number for Pr3+ and Gd3+ is 8 and the bond lengths Pr-Cl and Gd-Cl are 2.864(2) and 2.771(3) angstrom, respectively. The structural studies showed the complexes to have C2h symmetry.
Resumo:
New bis (2-methoxyethylcyclopentadienyl) yttrium and ytterbium tetrahydroborates (Ln = Y, 1; Yb, 2) have been synthesized in good yield by the reaction of bis (2-methoxyethylcyclopentadienyl) lanthanide chlorides (Ln = Y, Yb) with sodium borohydride in THF at room temperature. The title complexes were characterized by elemental analyses, MS, H-1 NMR and IR spectra. The crystal structures of 1 and 2 have been determined by X-ray diffraction. 1 crystallizes from THF-n-Hexane in space group Pna2(1) with unit cell parametert: a = 1.2390(3), b = 1.1339(2), c = 1.1919 (2) nm and V = 1.6745(6) nm3 with z = 4 for D(c) = 1.39 g.cm-3.The structure was solved by direct method and refined to final R = 0.061 (for 1730 observed reflections). The Space group of 2 is Pna2(1) with unit cell parameters: a = 1.2399(6), b = 1.1371(5), c = 1.1897(2) nm and V = 1.6773(1) nm3 with z = 4 for D(c) = 1.72 g.cm-3, R = 0.038 (for 2157 observed reflections). The X ray structures and IR reveal the bidentate yttrium and ytterbium tetrahydroborate complexes with the intramolecular coordination bonds between lanthanide metal and ligand oxygen atoms.
Resumo:
Lanthanide chlorides have been found to catalyze the Diels-Alder synthesis of 2-butoxy-3, 4-dihydro-2H-pyran and several norbornene derivatives under mild conditions. In particular, the heavier lanthanide chlorides are very active catalysts for some (4 + 2) cycloaddition reactions. The catalyst activities and selectivities generally increase with increasing atomic number of the rare earth elements.
Resumo:
The bonding and the 4f orbital effect of lanthanide elements at different valence state in their compounds have been studied by INDO method in this paper. The results obtained show that the bonding of lanthanide compounds is affected by many factors, such as valence state, ionic radius, ligand, coordinate number, space configuration etc. The strength of bonds composed of different ligands with lanthanide is distinctly different. The covalence of Ln-L bonds of lanthanide ions at high valence state in their compounds is larger than that at low valence state, The covalency at low coordinate number is larger than that at high coordinate number. Some lanthanide compounds with special configuration, besides sigma-bond, can form p(pi)-d(pi) dative bond with much overlap, which makes the Ln-L bond increase markedly. The effect of 4f orbitals on bonding is far less than that of 5d orbitals. The Ln 4f orbitals at 3 or 2 valence state may be considered to be essentially localized, while the contribution of 4f orbitals on bonding in 4 valent cerium compounds increases obviously, up to 1%.
Resumo:
The reaction of EuCl3, AlCl3 and C6Me6 in toluene gives the Eu(II) complex [Eu(eta-6-C6Me6)(AlCl4)2]4; X-ray crystal determination shows the molecule to be a cyclotetramer, in which the four Eu(C6Me6)AlCl4 units are connected via four groups of eta-2-AlCl4.
Resumo:
C-13 and H-1 NMR technique was used to study the interaction of Gly-Gly with heavy lanthanide cations Dy3+, Ho3+, Er3+, Tm3+ and Yb3+ in aqueous solution. The stability constants for the 1:1 and 1:2 complexes of Gly-Gly with Ho3+ and Yb3+ were determined from the titration curves of chemical shift versus concentration ratio of lanthanide to Gly-Gly. The solution structure of the Ln-Gly-Gly complex was analyzed based upon the C-13 and H-1 lanthanide induced shifts and the results show that in the complex Gly Gly is coordinated to the lanthanide ion through the carboxyl oxygens with the backbone of the ligand in an extended state.
Resumo:
Bis(t-butylcyclopentadienyl)lanthanide chloride (Ln = Nd or Gd) reacts with one equivalent of methyllithium in ether/tetrahydrofuran to give the complex [(C5H4tBu)2LnCH3]2 (Ln = Nd or Gd). The structure of [(C5H4tBu)2NdCH3]2 has been determined by X-ray analysis. The crystals are monoclinic of space group Cm with a = 9.538(2), b = 23.298(4), c = 9.505(3) angstrom, beta = 119.53(2)-degrees, V = 1828.0(7) angstrom 3, D(calc.) = 1.458 g/cm3 and Z = 2 for the dimer. The two (C5H4tBu)2Nd units in the dimer are connected by asymmetrical methyl bridges with independent Nd-C bond lengths of 2.70(2) and 2.53(2) angstrom and Nd-C-Nd angles of 94.7(9) and 87.3(6)-degrees.
Resumo:
The tetranuclear nearly-linear complex (eta-8-C8H8)Er(mu-eta-8-C8H8)K(mu-eta-8-C8H8)Er(mu-eta-8-C8H8)K(THF)4 (THF = tetrahydrofuran) is first synthesised by the reaction of benzylcyclopentadienyl erbium dichloride (PhCH2C5H4)ErCl2.3THF with cyclooctatetraenyl potassium K2C8H8 in 1:1 molar ratio in THF; a single crystal X-ray study has shown that the complex has the tetralayer-sandwich structure and that the adjacent Er3+ and K+ ions are bridged by eta-8-cyclooctatetraenyl group.