990 resultados para Cutting stock problem
Resumo:
Résumé L'eau est souvent considérée comme une substance ordinaire puisque elle est très commune dans la nature. En fait elle est la plus remarquable de toutes les substances. Sans l'eau la vie sur la terre n'existerait pas. L'eau représente le composant majeur de la cellule vivante, formant typiquement 70 à 95% de la masse cellulaire et elle fournit un environnement à d'innombrables organismes puisque elle couvre 75% de la surface de terre. L'eau est une molécule simple faite de deux atomes d'hydrogène et un atome d'oxygène. Sa petite taille semble en contradiction avec la subtilité de ses propriétés physiques et chimiques. Parmi celles-là, le fait que, au point triple, l'eau liquide est plus dense que la glace est particulièrement remarquable. Malgré son importance particulière dans les sciences de la vie, l'eau est systématiquement éliminée des spécimens biologiques examinés par la microscopie électronique. La raison en est que le haut vide du microscope électronique exige que le spécimen biologique soit solide. Pendant 50 ans la science de la microscopie électronique a adressé ce problème résultant en ce moment en des nombreuses techniques de préparation dont l'usage est courrant. Typiquement ces techniques consistent à fixer l'échantillon (chimiquement ou par congélation), remplacer son contenu d'eau par un plastique doux qui est transformé à un bloc rigide par polymérisation. Le bloc du spécimen est coupé en sections minces (denviron 50 nm) avec un ultramicrotome à température ambiante. En général, ces techniques introduisent plusieurs artefacts, principalement dû à l'enlèvement d'eau. Afin d'éviter ces artefacts, le spécimen peut être congelé, coupé et observé à basse température. Cependant, l'eau liquide cristallise lors de la congélation, résultant en une importante détérioration. Idéalement, l'eau liquide est solidifiée dans un état vitreux. La vitrification consiste à refroidir l'eau si rapidement que les cristaux de glace n'ont pas de temps de se former. Une percée a eu lieu quand la vitrification d'eau pure a été découverte expérimentalement. Cette découverte a ouvert la voie à la cryo-microscopie des suspensions biologiques en film mince vitrifié. Nous avons travaillé pour étendre la technique aux spécimens épais. Pour ce faire les échantillons biologiques doivent être vitrifiés, cryo-coupées en sections vitreuse et observées dans une cryo-microscope électronique. Cette technique, appelée la cryo- microscopie électronique des sections vitrifiées (CEMOVIS), est maintenant considérée comme étant la meilleure façon de conserver l'ultrastructure de tissus et cellules biologiques dans un état très proche de l'état natif. Récemment, cette technique est devenue une méthode pratique fournissant des résultats excellents. Elle a cependant, des limitations importantes, la plus importante d'entre elles est certainement dû aux artefacts de la coupe. Ces artefacts sont la conséquence de la nature du matériel vitreux et le fait que les sections vitreuses ne peuvent pas flotter sur un liquide comme c'est le cas pour les sections en plastique coupées à température ambiante. Le but de ce travail a été d'améliorer notre compréhension du processus de la coupe et des artefacts de la coupe. Nous avons ainsi trouvé des conditions optimales pour minimiser ou empêcher ces artefacts. Un modèle amélioré du processus de coupe et une redéfinitions des artefacts de coupe sont proposés. Les résultats obtenus sous ces conditions sont présentés et comparés aux résultats obtenus avec les méthodes conventionnelles. Abstract Water is often considered to be an ordinary substance since it is transparent, odourless, tasteless and it is very common in nature. As a matter of fact it can be argued that it is the most remarkable of all substances. Without water life on Earth would not exist. Water is the major component of cells, typically forming 70 to 95% of cellular mass and it provides an environment for innumerable organisms to live in, since it covers 75% of Earth surface. Water is a simple molecule made of two hydrogen atoms and one oxygen atom, H2O. The small size of the molecule stands in contrast with its unique physical and chemical properties. Among those the fact that, at the triple point, liquid water is denser than ice is especially remarkable. Despite its special importance in life science, water is systematically removed from biological specimens investigated by electron microscopy. This is because the high vacuum of the electron microscope requires that the biological specimen is observed in dry conditions. For 50 years the science of electron microscopy has addressed this problem resulting in numerous preparation techniques, presently in routine use. Typically these techniques consist in fixing the sample (chemically or by freezing), replacing its water by plastic which is transformed into rigid block by polymerisation. The block is then cut into thin sections (c. 50 nm) with an ultra-microtome at room temperature. Usually, these techniques introduce several artefacts, most of them due to water removal. In order to avoid these artefacts, the specimen can be frozen, cut and observed at low temperature. However, liquid water crystallizes into ice upon freezing, thus causing severe damage. Ideally, liquid water is solidified into a vitreous state. Vitrification consists in solidifying water so rapidly that ice crystals have no time to form. A breakthrough took place when vitrification of pure water was discovered. Since this discovery, the thin film vitrification method is used with success for the observation of biological suspensions of. small particles. Our work was to extend the method to bulk biological samples that have to be vitrified, cryosectioned into vitreous sections and observed in cryo-electron microscope. This technique is called cryo-electron microscopy of vitreous sections (CEMOVIS). It is now believed to be the best way to preserve the ultrastructure of biological tissues and cells very close to the native state for electron microscopic observation. Since recently, CEMOVIS has become a practical method achieving excellent results. It has, however, some sever limitations, the most important of them certainly being due to cutting artefacts. They are the consequence of the nature of vitreous material and the fact that vitreous sections cannot be floated on a liquid as is the case for plastic sections cut at room temperature. The aim of the present work has been to improve our understanding of the cutting process and of cutting artefacts, thus finding optimal conditions to minimise or prevent these artefacts. An improved model of the cutting process and redefinitions of cutting artefacts are proposed. Results obtained with CEMOVIS under these conditions are presented and compared with results obtained with conventional methods.
Resumo:
Fiber damages comprise fiber deformations, characterized as fiber curl, kink, dislocations and strength losses as well as some yet unidentified factors. This recently discovered phenomenon is especially evident in mill scale kraftpulps. Laboratory produced pulps tend to have less damages and superior strength properties compared to those produced in pulp mills. Generally fiber damages pose a problem in the production of reinforcement pulp because they tend to decrease the ability of fibers to transmit load. Previous studies on fiber damage have shown that most of the fiber damages occur during brown stock processing starting from cooking and discharging. This literature review gives an overall picture on fiber damages occurring during softwood kraft pulp production with an emphasis on the oxygen delignification stage. In addition the oxygen delignification stage itself is described in more detailed extent in order to understand the mechanisms behind the delignification and fiber damaging effect. The literature available on this subject is unfortunately quite contradictory and implicates a lotof different terms. Only a few studies have been published which help to understand the nature of fiber damages. For that reason the knowledge presented in this work is not only based on previous studies but also on research scientist and mill staff interviews.
Resumo:
The patent system was created for the purpose of promoting innovation by granting the inventors a legally defined right to exclude others in return for public disclosure. Today, patents are being applied and granted in greater numbers than ever, particularly in new areas such as biotechnology and information andcommunications technology (ICT), in which research and development (R&D) investments are also high. At the same time, the patent system has been heavily criticized. It has been claimed that it discourages rather than encourages the introduction of new products and processes, particularly in areas that develop quickly, lack one-product-one-patent correlation, and in which theemergence of patent thickets is characteristic. A further concern, which is particularly acute in the U.S., is the granting of so-called 'bad patents', i.e. patents that do not factually fulfil the patentability criteria. From the perspective of technology-intensive companies, patents could,irrespective of the above, be described as the most significant intellectual property right (IPR), having the potential of being used to protect products and processes from imitation, to limit competitors' freedom-to-operate, to provide such freedom to the company in question, and to exchange ideas with others. In fact, patents define the boundaries of ownership in relation to certain technologies. They may be sold or licensed on their ownor they may be components of all sorts of technology acquisition and licensing arrangements. Moreover, with the possibility of patenting business-method inventions in the U.S., patents are becoming increasingly important for companies basing their businesses on services. The value of patents is dependent on the value of the invention it claims, and how it is commercialized. Thus, most of them are worth very little, and most inventions are not worth patenting: it may be possible to protect them in other ways, and the costs of protection may exceed the benefits. Moreover, instead of making all inventions proprietary and seeking to appropriate as highreturns on investments as possible through patent enforcement, it is sometimes better to allow some of them to be disseminated freely in order to maximize market penetration. In fact, the ideology of openness is well established in the software sector, which has been the breeding ground for the open-source movement, for instance. Furthermore, industries, such as ICT, that benefit from network effects do not shun the idea of setting open standards or opening up their proprietary interfaces to allow everyone todesign products and services that are interoperable with theirs. The problem is that even though patents do not, strictly speaking, prevent access to protected technologies, they have the potential of doing so, and conflicts of interest are not rare. The primary aim of this dissertation is to increase understanding of the dynamics and controversies of the U.S. and European patent systems, with the focus on the ICT sector. The study consists of three parts. The first part introduces the research topic and the overall results of the dissertation. The second part comprises a publication in which academic, political, legal and business developments that concern software and business-method patents are investigated, and contentiousareas are identified. The third part examines the problems with patents and open standards both of which carry significant economic weight inthe ICT sector. Here, the focus is on so-called submarine patents, i.e. patentsthat remain unnoticed during the standardization process and then emerge after the standard has been set. The factors that contribute to the problems are documented and the practical and juridical options for alleviating them are assessed. In total, the dissertation provides a good overview of the challenges and pressures for change the patent system is facing,and of how these challenges are reflected in standard setting.
Resumo:
In this paper we consider a sequential allocation problem with n individuals. The first individual can consume any amount of some endowment leaving the remaining for the second individual, and so on. Motivated by the limitations associated with the cooperative or non-cooperative solutions we propose a new approach. We establish some axioms that should be satisfied, representativeness, impartiality, etc. The result is a unique asymptotic allocation rule. It is shown for n = 2; 3; 4; and a claim is made for general n. We show that it satisfies a set of desirable properties. Key words: Sequential allocation rule, River sharing problem, Cooperative and non-cooperative games, Dictator and ultimatum games. JEL classification: C79, D63, D74.
Resumo:
We prove that there are one-parameter families of planar differential equations for which the center problem has a trivial solution and on the other hand the cyclicity of the weak focus is arbitrarily high. We illustrate this phenomenon in several examples for which this cyclicity is computed.
Resumo:
The paper is motivated by the valuation problem of guaranteed minimum death benefits in various equity-linked products. At the time of death, a benefit payment is due. It may depend not only on the price of a stock or stock fund at that time, but also on prior prices. The problem is to calculate the expected discounted value of the benefit payment. Because the distribution of the time of death can be approximated by a combination of exponential distributions, it suffices to solve the problem for an exponentially distributed time of death. The stock price process is assumed to be the exponential of a Brownian motion plus an independent compound Poisson process whose upward and downward jumps are modeled by combinations (or mixtures) of exponential distributions. Results for exponential stopping of a Lévy process are used to derive a series of closed-form formulas for call, put, lookback, and barrier options, dynamic fund protection, and dynamic withdrawal benefit with guarantee. We also discuss how barrier options can be used to model lapses and surrenders.
Resumo:
Se describe, en una zona de la vertiente norte de los Pirineos españoles, la estructura dasocrática de rodales irregulares de abeto excesivamente capitalizados en existencias volumétricas, así como la naturaleza de las intervenciones de entresaca que se les aplican al objeto de contrarrestar la tendencia hacia una indeseable uniformidad de la masa. La situación inicial revela una elevada espesura, con importantes excedentes de individuos pertenecientes a las clases diamétricas de madera gruesa, y que conduce a formas selvícolas tipológicas en avanzado proceso de regularización. Empero, la estabilidad mecánica de los pies se manifiesta alejada de sus umbrales críticos en todos los estratos, y la capacidad de regeneración del sistema resulta aceptable. El tratamiento de entresaca realizado, cuya severidad se centró fundamentalmente sobre los pies de diámetro superior a 30 cm, mantiene todavía una situación de espesura excesiva que impide la adscripción de los rodales a estructuras equilibradas, pero ha permitido la liberación de la competencia vertical de los pies en edad de latizal.
Resumo:
This empirical study consists in an investigation of the effects, on the development of Information Problem Solving (IPS) skills, of a long-term embedded, structured and supported instruction in Secondary Education. Forty secondary students of 7th and 8th grades (13–15 years old) participated in the 2-year IPS instruction designed in this study. Twenty of them participated in the IPS instruction, and the remaining twenty were the control group. All the students were pre- and post-tested in their regular classrooms, and their IPS process and performance were logged by means of screen capture software, to warrant their ecological validity. The IPS constituent skills, the web search sub-skills and the answers given by each participant were analyzed. The main findings of our study suggested that experimental students showed a more expert pattern than the control students regarding the constituent skill ‘defining the problem’ and the following two web search sub-skills: ‘search terms’ typed in a search engine, and ‘selected results’ from a SERP. In addition, scores of task performance were statistically better in experimental students than in control group students. The paper contributes to the discussion of how well-designed and well-embedded scaffolds could be designed in instructional programs in order to guarantee the development and efficiency of the students’ IPS skills by using net information better and participating fully in the global knowledge society.
Resumo:
Random problem distributions have played a key role in the study and design of algorithms for constraint satisfaction and Boolean satisfiability, as well as in ourunderstanding of problem hardness, beyond standard worst-case complexity. We consider random problem distributions from a highly structured problem domain that generalizes the Quasigroup Completion problem (QCP) and Quasigroup with Holes (QWH), a widely used domain that captures the structure underlying a range of real-world applications. Our problem domain is also a generalization of the well-known Sudoku puz- zle: we consider Sudoku instances of arbitrary order, with the additional generalization that the block regions can have rectangular shape, in addition to the standard square shape. We evaluate the computational hardness of Generalized Sudoku instances, for different parameter settings. Our experimental hardness results show that we can generate instances that are considerably harder than QCP/QWH instances of the same size. More interestingly, we show the impact of different balancing strategies on problem hardness. We also provide insights into backbone variables in Generalized Sudoku instances and how they correlate to problem hardness.
Resumo:
In this study, the population structure of the white grunt (Haemulon plumieri) from the northern coast of the Yucatan Peninsula was determined through an otolith shape analysis based on the samples collected in three locations: Celestún (N 20°49",W 90°25"), Dzilam (N 21°23", W 88°54") and Cancún (N 21°21",W 86°52"). The otolith outline was based on the elliptic Fourier descriptors, which indicated that the H. plumieri population in the northern coast of the Yucatan Peninsula is composed of three geographically delimited units (Celestún, Dzilam, and Cancún). Significant differences were observed in mean otolith shapes among all samples (PERMANOVA; F2, 99 = 11.20, P = 0.0002), and the subsequent pairwise comparisons showed that all samples were significantly differently from each other. Samples do not belong to a unique white grunt population, and results suggest that they might represent a structured population along the northern coast of the Yucatan Peninsula
Resumo:
This bachelor's thesis studies calendar anomalies in stock returns in five South American countries including Argentina, Brazil, Chile and Mexico. The analysis in done using regression analysis and the OLS- method.