960 resultados para Covalent bonds
Resumo:
Religion at work is nowadays a hot-topic for organizational researchers. Studies have been conducted in order to understand whether there is a possible connection between God and management. This study aims to understand what is the impact of managing through God’s Love. It was found that managing with Love contributes for a new organizational culture characterized by the way managers face work (Culture of Identification), the way they use their characteristics for the benefit of the organization (Culture of Integration), the way human relations are developed (Culture of Bonds) and that it creates sustainable value (Culture of Entrepreneurship) for organizations. Main implications of these results are presented below.
Resumo:
Social impact bonds are an increasingly popular method of unlocking typical social investment barriers and fuelling social innovation. This feasibility study aims to understand whether a social impact bond is a suitable tool for decreasing unnecessary foster care placements in Portugal, which have been proven to cause significant social and financial damage to societies. This research question is answered through a financial model which combines the costs of this social problem with Projecto Família’s intervention model, a leading intensive family preservation service. Main findings suggest using SIB funding for a 5-year project with the goal of generating the proper impact measurement metrics lacking in the field.
Resumo:
The main objective of this thesis was the development of polymeric structures from the dissolution of FucoPol, a bacterial exopolysaccharide (EPS), in a biocompatible ionic liquid, choline acetate. The FucoPol was produced by the bacteria Enterobacter A47 using glycerol as carbon source at controlled temperature and pH (30ºC and 7, respectively). At the end of 3 days it was produced 7 g/L of FucoPol. The net yield of Fucopol in glycerol (YP/S) was 0.22 g/g and the maximum productivity 2.37 g/L.d This polymer was characterized about its composition in sugars and acyl groups (by High-Performance Liquid Chromatography - HPLC), containing fucose (35 % mol), galactose (21 % mol), glucose (29 % mol), rhamnose (3% mol) and glucuronic acid (12% mol) as well as acetate (14.28 % mol), pyruvate (2.15 % mol) and succinate (1.80 % mol). Its content of water and ash was 15% p/p and 2% p/p, respectively, and the chemical bonds (determined by Infrared Spectroscopy - FT-IR) are consistent to the literature reports. However, due to limitations in Differential Scanning Calorimetry (DSC) equipment it was not possible to determine the glass transition temperature. In turn, the ionic liquid showed the typical behavior of a Newtonian fluid, glass transition temperature (determined by DSC) -98.03ºC and density 1.1031 g/cm3. The study of chemical bonds by FT-IR showed that amount of water (8.80%) influenced the visualization of the bands predicted to in view of their chemical structure. After the dissolution of the FucoPol in the ionic liquid at different temperatures (50, 60, 80 and 100 ° C) it was promoted the removal of this by the phase inversion method using deionized water as a solvent, followed by drying in an oven at 70 ° C. The mixtures before and after the phase inversion method were characterized through the studies mentioned above. In order to explore possible application field’s biocompatibility assays and collage on balsa wood tests were performed. It was found that the process of washing with water by the phase inversion method was not totally effective in removing the biocompatible ionic liquid, since all FucoPol – IL mixtures still contained ionic liquid in their composition as can be seen by the DSC results and FT-IR. In addition, washing the mixtures with water significantly altered the composition of FucoPol. However, these mixtures, that developed a viscous behavior typical of a non-Newtonian fluid (shear-thinning), have the potential to be applied in the biomedical field as well as biological glues.
Resumo:
This project aimed to engineer new T2 MRI contrast agents for cell labeling based on formulations containing monodisperse iron oxide magnetic nanoparticles (MNP) coated with natural and synthetic polymers. Monodisperse MNP capped with hydrophobic ligands were synthesized by a thermal decomposition method, and further stabilized in aqueous media with citric acid or meso-2,3-dimercaptosuccinic acid (DMSA) through a ligand exchange reaction. Hydrophilic MNP-DMSA, with optimal hydrodynamic size distribution, colloidal stability and magnetic properties, were used for further functionalization with different coating materials. A covalent coupling strategy was devised to bind the biopolymer gum Arabic (GA) onto MNPDMSA and produce an efficient contrast agent, which enhanced cellular uptake in human colorectal carcinoma cells (HCT116 cell line) compared to uncoated MNP-DMSA. A similar protocol was employed to coat MNP-DMSA with a novel biopolymer produced by a biotechnological process, the exopolysaccharide (EPS) Fucopol. Similar to MNP-DMSA-GA, MNP-DMSA-EPS improved cellular uptake in HCT116 cells compared to MNP-DMSA. However, MNP-DMSA-EPS were particularly efficient towards the neural stem/progenitor cell line ReNcell VM, for which a better iron dose-dependent MRI contrast enhancement was obtained at low iron concentrations and short incubation times. A combination of synthetic and biological coating materials was also explored in this project, to design a dynamic tumortargeting nanoprobe activated by the acidic pH of tumors. The pH-dependent affinity pair neutravidin/iminobiotin, was combined in a multilayer architecture with the synthetic polymers poy-L-lysine and poly(ethylene glycol) and yielded an efficient MRI nanoprobe with ability to distinguish cells cultured in acidic pH conditions form cells cultured in physiological pH conditions.
Resumo:
Portfolio diversification benefits have been extensively documented and acknowledge in the literature since 1952. However, the majority of the studies have focus on an equity context, and only very few on bonds. The study purposed tries to understand and measure the diversification benefits for a pure bond portfolio by investing in securities with different credit risks, maturities and even geographies. Diversification benefits were achieved under the proposed model and some conclusions were withdrawn.
Resumo:
The aim of this work was to study the self-assembly process of C3-symmetric molecules. To accomplish this objective 1,3,5 – benzentricarboxamides (BTA) derivatives were obtained. Five C3-symmetric molecules were synthesized in moderate to good yields (39-72%) using azo-benzene, aniline, benzylamine, tryptophan and tyrosine. The aggregation behavior of the BTA derivatives was probed with 1H-NMR spectroscopy, 1H-1H 2D Nuclear Overhauser Effect Spectroscopy (NOESY) and Diffusion Ordered Spectroscopy (DOSY). These experiments allowed to study the influence of H-bonding groups, aromatic rings, unsaturated bonds and the overall geometry in the molecular self-assembly associated with the different structural patterns present on these molecules. The stacking and large molecule behavior where observed in BTA 1, aniline derivative, BTA 4, tyrosine derivative or BTA 5, tryptophan derivative, with several of those discussed functional groups such as unsaturated bonds and H-bonding groups. BTA 5 was used in a few preliminary interaction studies with glucose and ammonium chloride showing interaction with the ammonium ion.
Resumo:
This paper analyses the Portuguese stock market since it reopened in 1977, with a special focus on the evolution of the statistic and stochastic characteristics of the market return throughout this 36 year period. The market return for the period of time between 1977 and 2012 (September 28th) is estimated and then compared with the return that would have been achieved with Government bonds and treasury bills, which allows us to confirm that the hierarchy of return / risk across the different financial instruments is verified. The market risk premium for this 36 year period is also estimated and a comparison with other markets is performed, suggesting that the Portuguese market’s risk has not been compensated by an adequate return. The study also examines the evolution of the Portuguese market’s volatility in the 1977-2012 period and compares it with other markets, showing the existence of extremely high peaks during the first 11 years, but indicating a downwards trend throughout the whole period under analysis. Finally, the correlation between market returns for Portugal and for other countries and the degree of integration are estimated and their evolution throughout time is assessed, leading to the conclusion that the performance of the Portuguese stock market has become increasingly correlated with major European markets – correlation with some markets close to 0.70 from 2000 onwards-, but that country-specific risk factors are still relevant.
Resumo:
Relatório de estágio de mestrado em Educação Pré-Escolar
Resumo:
A one-step melt-mixing method is proposed to study dispersion and re-agglomeration phenomena of the as-received and functionalized graphite nanoplates in polypropylene melts. Graphite nanoplates were chemically modified via 1,3-dipolar cycloaddition of an azomethine ylide and then grafted with polypropylene-graft-maleic anhydride. The effect of surface functionalization on the dispersion kinetics, nanoparticle re-agglomeration and interface bonding with the polymer is investigated. Nanocomposites with 2 or 10 wt% of as-received and functionalized graphite nanoplates were prepared in a small-scale prototype mixer coupled to a capillary rheometer. Samples were collected along the flow axis and characterized by optical microscopy, scanning electron microscopy and electrical conductivity measurements. The as-received graphite nanoplates tend to re-agglomerate upon stress relaxation of the polymer melt. The covalent attachment of a polymer to the nanoparticle surface enhances the stability of dispersion, delaying the re-agglomeration. Surface modification also improves interfacial interactions and the resulting composites presented improved electrical conductivity.
Resumo:
Tese de Doutoramento em Sociologia
Resumo:
During last years, photophysical properties of complexes of semiconductor quantum dots (QDs) with organic dyes have attracted increasing interest. The development of different assemblies based on QDs and organic dyes allows to increase the range of QDs applications, which include imaging, biological sensing and electronic devices.1 Some studies demonstrate energy transfer between QDs and organic dye in assemblies.2 However, for electronic devices purposes, a polymeric matrix is required to enhance QDs photostability. Thus, in order to attach the QDs to the polymer surface it is necessary to chemically modify the polymer to induce electronic charges and stabilize the QDs in the polymer. The present work aims to investigate the design of assemblies based on polymer-coated QDs and an integrated acceptor organic dye. Polymethylmethacrylate (PMMA) and polycarbonate (PC) were used as polymeric matrices, and nile red as acceptor. Additionally, a PMMA matrix modified with 2-mercaptoethylamine is used to improve the attachment between both the donor (QDs) and the acceptor (nile red), as well as to induce a covalent bond between the modified PMMA and the QDs. An enhancement of the energy transfer efficiency by using the modified PMMA is expected and the resulting assembly can be applied for energy harvesting.
Resumo:
CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol–gel process. Both alkaline and acidic catalysis of the sol–gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.
Polysaccharide-based freestanding multilayered membranes exhibiting reversible switchable properties
Resumo:
The design of self-standing multilayered structures based on biopolymers has been attracting increasing interest due to their potential in the biomedical field. However, their use has been limited due to their gel-like properties. Herein, we report the combination of covalent and ionic cross-linking, using natural and non-cytotoxic cross-linkers, such as genipin and calcium chloride (CaCl2). Combining both cross-linking types the mechanical properties of the multilayers increased and the water uptake ability decreased. The ionic cross-linking of multilayered chitosan (CHI)â alginate (ALG) films led to freestanding membranes with multiple interesting properties, such as: improved mechanical strength, calcium-induced adhesion and shape memory ability. The use of CaCl2 also offered the possibility of reversibly switching all of these properties by simple immersion in a chelate solution. We attribute the switch-ability of the mechanical properties, shape memory ability and the propensity for induced-adhesion to the ionic cross-linking of the multilayers. These findings suggested the potential of the developed polysaccharide freestanding membranes in a plethora of research fields, including in biomedical and biotechnological fields.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Tese de Doutoramento em Ciências da Educação (Especialidade de Tecnologia Educativa)