949 resultados para Cobalt phthalocyanine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1D Co/CoFe2O4 composites with tunable morphologies were fabricated by a facile solvothermal route in the presence of a surfactant poly(vinylpyrrolidone) (PVP); they may be very attractive for potential applications because of their outstanding soft magnetism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We realized ambipolar transport behavior in field-effect transistors by using p-p isotype heterojunction films as active layers, which consisted of two p-type semiconductor materials, 2, 2'; 7', 2 ''-terphenanthrenyl (Ph3) and vanadyl-phthalocyanine (VOPc). The ambipolar charge transport was attributed to the interfacial electronic structure of Ph3-VOPc isotype heterojunction, and electrons and holes were accumulated at both sides of the narrow band-gap VOPc and the wide band-gap Ph3, respectively, which were confirmed by the capacitance-voltage relationship of metal-oxide-semiconductor diodes. The accumulation thickness of carriers was also obtained by changing the heterojunction active layer thickness. Furthermore, the results indicate that the device performance is relative to interfacial electronic structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We studied the charge transport in organic heterojunction films consisting of copper phthalocyanine (CuPc) and copper hexadecafluorophthalocyanine (F16CuPc). The heterojunction effect between CuPc and F16CuPc induced high-density carriers at both sides of heterojunction. The Hall effect was observed at room temperature, which demonstrated the existence of free carriers and their delocalized transport under heterojunction effect. The Hall mobility of 1.2 cm(2)/V s for holes and 2.4 cm(2)/V s for electrons indicated that the transport capability of the heterojunction films is comparable to single crystals. The transport process was further explained by the multiple trap-and-release model according to the temperature dependence of conduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel cemented carbides (W0.7Al0.3)C-0.65-Co with different cobalt contents were prepared by solid-state reaction and hot-pressing technique. Hot-pressing technique as a novel technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared with WC-Co. The density, operate cost of the novel material were lower than WC-Co system. The novel materials were easy to process nanoscale sintering and get the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.7Al0.3)C-0.65-Co cemented carbides system although the carbon deficient get the astonished 35% value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel cemented carbides (W0.5Al0.5)C-0.8-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared to WC-Co. The density, operating cost of the novel material were much lower than WC-Co. There is almost no eta-phase in the (W0.5Al0.5)C-0.8-Co cemented carbides system although the carbon deficient get the value of 20%, and successfully got the nanostructured rounded (W0.5Al0.5)C-0.8 particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel cemented carbides (W0.4Al0.6)C-0.5-Co With different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have good mechanical properties compared with WC-Co. The density and operation cost of the novel material were much lower than the WC-Co system. It was easy to process submicroscale sintering with the novel materials and obtain the rounded particles in the bulk materials. There is almost no eta-phase in the (W0.4Al0.6)C-0.5-CO cemented carbides system although the carbon deficient obtains the astonishing value of 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel cemented carbides (W0.8Al0.2)C-0.7-Co with different cobalt contents were prepared by mechanical alloying and hot-pressing technique. Hot-pressing technique as a common technique was performed to fabricate the bulk bodies of the hard alloys. The novel cemented carbides have superior mechanical properties compared with WC-Co. The density, operate cost of the novel material were much lower than WC-Co system. The novel materials were easy to process nanoscale sintering and get the rounded particles in the bulk materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two highly connected cobalt(II) and zinc(II) coordination polymers with tetranuclear metal clusters as the nodes of network have been prepared, being the first example of an 8-connected self-penetrating net based on a cross-linked alpha-Po subnet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The large-size domain and continuous para-sexiphenyl (p-6P) ultrathin film was fabricated successfully on silicon dioxide (SiO2) substrate and investigated by atomic force microscopy and selected area electron diffraction. At the optimal substrate temperature of 180 degrees C, the first-layer film exhibits the mode of layer growth, and the domain size approaches 100 mu m(2). Its saturated island density (0.018 mu m(-2)) is much smaller than that of the second-layer film (0.088 mu m(-2)), which begins to show the Volmer-Weber growth mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The para-sexiphenyl (p-6P) monolayer film induces weak epitaxy growth (WEG) of disk-like organic semiconductors, and their charge mobilities are increased dramatically to the level of the corresponding single crystals [Wang et al., Adv. Mater. 2007, 19, 2168]. The growth behavior and morphology of p-6P monolayer film play decisive roles on WEG. Here, we investigated the growth behavior of p-6P submonolayer film as a function of the substrate temperature. Its growth exhibited two different mechanisms at high and low substrate temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexadecafluorophthalocyaninatocopper (F16CuPc)/zine phthalocyanine (ZnPc) heterojunction layer has been used as buffer layer in organic photovoltaic (OPV) cells based on ZnPc and C-60. The F16CuPc/ZnPc heterojunction with highly conductive property decreased the contact resistance between the indium-tin-oxide anode and the organic layer. As a result, the short-circuit current density and fill factor were increased, and the power-conversion efficiency was improved by over 60%. Therefore, the method provides an effective path to improve the performance of OPV cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ambipolar transport has been realized in organic heterojunction transistors with metal phthalocyanines, phenanthrene-based conjugated oligomers as the first semiconductors and copper-hexadecafluoro-phthalocyanine as the second semiconductor. The electron and hole mobilities of ambipolar devices with rod-like molecules were comparable to the corresponding single component devices, while the carrier mobility of ambipolar devices with disk-like molecules was much lower than the corresponding single component devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spinel ferrite, MFe2O4 (M = Co, Ni), ribbons with nanoporous structure were prepared by electrospinning combined with sol-gel technology. The ribbons were formed through the agglomeration of magnetic nanoparticles with PVP as the structure directing template. The length of the polycrystalline ribbons can reach millimeters, and the width of the ribbons can be tuned from several micrometers to several hundred nanometers by changing the concentration of precursor. The nanoporous structure was formed during the decomposition of PVP and inorganic salts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of organic semiconductor thin films is extremely important in organic electronic devices. This tutorial review-which should particularly appeal to chemists and physicists interested in organic thin-film growth, organic electronic devices and organic semiconductor materials-summarizes the method of weak epitaxy growth (WEG) and its application in the fabrication of high quality organic semiconductor thin films.