950 resultados para Clinical pharmacology
Resumo:
Background In Australia, breast cancer is the most common cancer affecting Australian women. Inequalities in clinical and psychosocial outcomes have existed for some time, affecting particularly women from rural areas and from areas of disadvantage. We have a limited understanding of how individual and area-level factors are related to each other, and their associations with survival and other clinical and psychosocial outcomes. Methods/Design This study will examine associations between breast cancer recurrence, survival and psychosocial outcomes (e.g. distress, unmet supportive care needs, quality of life). The study will use an innovative multilevel approach using area-level factors simultaneously with detailed individual-level factors to assess the relative importance of remoteness, socioeconomic and demographic factors, diagnostic and treatment pathways and processes, and supportive care utilization to clinical and psychosocial outcomes. The study will use telephone and self-administered questionnaires to collect individual-level data from approximately 3, 300 women ascertained from the Queensland Cancer Registry diagnosed with invasive breast cancer residing in 478 Statistical Local Areas Queensland in 2011 and 2012. Area-level data will be sourced from the Australian Bureau of Statistics census data. Geo-coding and spatial technology will be used to calculate road travel distances from patients' residence to diagnostic and treatment centres. Data analysis will include a combination of standard empirical procedures and multilevel modelling. Discussion The study will address the critical question of: what are the individual- or area-level factors associated with inequalities in outcomes from breast cancer? The findings will provide health care providers and policy makers with targeted information to improve the management of women with breast cancer, and inform the development of strategies to improve psychosocial care for women with breast cancer.
Resumo:
The discovery of protein variation is an important strategy in disease diagnosis within the biological sciences. The current benchmark for elucidating information from multiple biological variables is the so called “omics” disciplines of the biological sciences. Such variability is uncovered by implementation of multivariable data mining techniques which come under two primary categories, machine learning strategies and statistical based approaches. Typically proteomic studies can produce hundreds or thousands of variables, p, per observation, n, depending on the analytical platform or method employed to generate the data. Many classification methods are limited by an n≪p constraint, and as such, require pre-treatment to reduce the dimensionality prior to classification. Recently machine learning techniques have gained popularity in the field for their ability to successfully classify unknown samples. One limitation of such methods is the lack of a functional model allowing meaningful interpretation of results in terms of the features used for classification. This is a problem that might be solved using a statistical model-based approach where not only is the importance of the individual protein explicit, they are combined into a readily interpretable classification rule without relying on a black box approach. Here we incorporate statistical dimension reduction techniques Partial Least Squares (PLS) and Principal Components Analysis (PCA) followed by both statistical and machine learning classification methods, and compared them to a popular machine learning technique, Support Vector Machines (SVM). Both PLS and SVM demonstrate strong utility for proteomic classification problems.
Resumo:
The progression of spinal deformity is traditionally monitored on hard copy radiographs using the Cobb method with a protractor and pencil. The rotation of the spine and ribcage (rib hump) in scoliosis is measured with a hand-held inclinometer/Scoliometer. The iPhone and other smart phones, can accurately sense inclination, and can therefore be used to measure Cobb angles and rib hump angulation. The purpose of this study was to quantify the performance of the iPhone compared to the standard protractor (Cobb angles) and the Scoliometer (rib hump).
Resumo:
Purpose: The Australian Universities Radiation Therapy Student Clinical Assessment Form (AURTSCAF) was designed to assess the clinical skills of radiation therapy (RT) students from the six universities that offer entry level RT programs. Given the AURTSCAF has now been in use for over two years, the Radiation Therapy Program Coordinators (RTPC) group initiated a post implementation evaluation survey. This formed the final phase of the AURTSCAF project and was funded by the Radiation Oncology Division of the Department of Health and Ageing. Methods: A cross-sectional designed survey using purposive sampling was distributed via email to all RT clinical sites. The survey asked questions about the requirements of a pass grade for students at different stages of their program, and the addition of a new category of assessment related to fitness to practise. Response types included both forced choice closed ended responses and open ended responses. There was also a section for open comments about the AURTSCAF. Results: There were 100 responses (55%) from clinicians who had utilised the assessment form over the previous 12 month period. Responses highlighted several positives with regard to the utility and implementation of the form. Comments regarding areas for improvement with the standardisation of the grading of students and consensus for the addition of a new domain in fitness for practise have informed the recommended changes proposed for 2012. Conclusion: This evaluation has provided a representative sample of the views of clinicians involved in assessing students on clinical placement. Recommendations include the addition of the sixth domain of assessment: Fitness for practise, the addition of descriptors and prompts for this domain in the user guide, the addition of a consensus statement about the use of the rating scale and dissemination of the proposed changes nationally.
Resumo:
Objective: Radiation safety principles dictate that imaging procedures should minimise the radiation risks involved, without compromising diagnostic performance. This study aims to define a core set of views that maximises clinical information yield for minimum radiation risk. Angiographers would supplement these views as clinically indicated. Methods: An algorithm was developed to combine published data detailing the quality of information derived for the major coronary artery segments through the use of a common set of views in angiography with data relating to the dose–area product and scatter radiation associated with these views. Results: The optimum view set for the left coronary system comprised four views: left anterior oblique (LAO) with cranial (Cr) tilt, shallow right anterior oblique (AP-RAO) with caudal (Ca) tilt, RAO with Ca tilt and AP-RAO with Cr tilt. For the right coronary system three views were identified: LAO with Cr tilt, RAO and AP-RAO with Cr tilt. An alternative left coronary view set including a left lateral achieved minimally superior efficiency (,5%), but with an ,8% higher radiation dose to the patient and 40% higher cardiologist dose. Conclusion: This algorithm identifies a core set of angiographic views that optimises the information yield and minimises radiation risk. This basic data set would be supplemented by additional clinically determined views selected by the angiographer for each case. The decision to use additional views for diagnostic angiography and interventions would be assisted by referencing a table of relative radiation doses for the views being considered.
Resumo:
Background: Outside the mass-spectrometer, proteomics research does not take place in a vacuum. It is affected by policies on funding and research infrastructure. Proteomics research both impacts and is impacted by potential clinical applications. It provides new techniques & clinically relevant findings, but the possibilities for such innovations (and thus the perception of the potential for the field by funders) are also impacted by regulatory practices and the readiness of the health sector to incorporate proteomics-related tools & findings. Key to this process is how knowledge is translated. Methods: We present preliminary results from a multi-year social science project, funded by the Canadian Institutes of Health Research, on the processes and motivations for knowledge translation in the health sciences. The proteomics case within this wider study uses qualitative methods to examine the interplay between proteomics science and regulatory and policy makers regarding clinical applications of proteomics. Results: Adopting an interactive format to encourage conference attendees’ feedback, our poster focuses on deficits in effective knowledge translation strategies from the laboratory to policy, clinical, & regulatory arenas. An analysis of the interviews conducted to date suggests five significant choke points: the changing priorities of funding agencies; the complexity of proteomics research; the organisation of proteomics research; the relationship of proteomics to genomics and other omics sciences; and conflict over the appropriate role of standardisation. Conclusion: We suggest that engagement with aspects of knowledge translation, such as those mentioned above, is crucially important for the eventual clinical application ofproteomics science on any meaningful scale.