952 resultados para Chromatography liquid with fluorescence detection
Resumo:
Acacia mearnsii de Wild (black wattle) is one of the most important trees planted in Southern Brazil for tannin extraction and charcoal production. The pyrolysis of the black wattle wood used for obtaining charcoal is performed in brick ovens, with the gas fraction being sent directly into the environment. The present study examines the condensable compounds present in the liquor produced from black wattle wood at different thermal degradation conditions, using gas chromatography coupled with mass spectrometry (GC/MS). Branches of black wattle were thermally degraded at controlled ambient and temperature conditions. Overall, a higher variety of compounds were obtained under atmospheric air pressure than under synthetic air pressure. Most of the tentatively identified compounds, such as carboxylic acids, phenols, aldehydes, and low molecular mass lignin fragments, such as guayacol, syringol, and eugenol, were products of lignin thermoconversion. Substituted aromatic compounds, such as vanillin, ethyl vanillin, and 2-methoxy-4-propeny-phenol, were also identified. At temperatures above 200 ºC, furan, 2-acetylfuran, methyl-2-furoate, and furfural, amongst others, were identified as polysaccharide derivatives from cellulose and hemicellulose depolymerization. This study evidences the need for adequate management of the condensable by-products of charcoal production, both for economic reasons and for controlling their potential environmental impact.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
In the theory part the membrane emulsification was studied. Emulsions are used in many industrial areas. Traditionally emulsions are prepared by using high shear in rotor-stator systems or in high pressure homogenizer systems. In membrane emulsification two immiscible liquids are mixed by pressuring one liquid through the membrane into the other liquid. With this technique energy could be saved, more homogeneous droplets could be formed and the amount of surfactant could be decreased. Ziegler-Natta and single-site catalysts are used in olefin polymerization processes. Nowadays, these catalysts are prepared according to traditional mixing emulsification. More homogeneous catalyst particles that have narrower particle size distribution might be prepared with membrane emulsification. The aim of the experimental part was to examine the possibility to prepare single site polypropylene catalyst using membrane emulsification technique. Different membrane materials and solidification techniques of the emulsion were examined. Also the toluene-PFC phase diagram was successfully measured during this thesis work. This phase diagram was used for process optimization. The polytetrafluoroethylene membranes had the largest contact angles with toluene and also the biggest difference between the contact angles measured with PFC and toluene. Despite of the contact angle measurement results no significant difference was noticed between particles prepared using PTFE membrane or metal sinter. The particle size distributions of catalyst prepared in these tests were quite wide. This would probably be fixed by using a membrane with a more homogeneous pore size distribution. It is also possible that the solidification rate has an effect on the particle sizes and particle morphology. When polymeric membranes are compared PTFE is probably still the best material for the process as it had the best chemical durability.
Resumo:
A spectrophotometric flow injection method for the determination of paracetamol in pharmaceutical formulations is proposed. The procedure was based on the oxidation of paracetamol by sodium hypochloride and the determination of the excess of this oxidant using o-tolidine dichloride as chromogenic reagent at 430 nm. The analytical curve was linear in the paracetamol concentration range from 8.50 x 10-6 to 2.51 x 10-4 mol L-1 with a detection limit of 5.0 x 10-6 mol L-1. The relative standard deviation was smaller than 1.2% for 1.20 x 10-4 mol L-1 paracetamol solution (n = 10). The results obtained for paracetamol in pharmaceutical formulations using the proposed flow injection method and those obtained using a USP Pharmacopoeia method are in agreement at the 95% confidence level.
Resumo:
A spectrophotometric flow injection method for the determination of Zn(II) in ophthalmic formulations was developed. In this work, Zn(II) ion was complexed with Alizarin red S in borate buffer solution (pH 9.0) and the chromophore produced was monitored at 520 nm. The analytical curve was linear in the Zn(II) concentration range from 6.05 x 10-6 to 1.50 x 10-4 mol L-1 with a detection limit of 3.60 x 10-6 mol L-1. Recoveries ranged from 96.3 to 105 % and a relative standard deviation of 1.2 % (n = 10) for 5.5x10-5 mol L-1 Zn(II) reference solution were obtained. The sampling rate was 60 h-1 and the results obtained of Zn(II) in ophthalmic products using this procedure are in close agreement with those obtained using a comparative spectrophotometric procedure at 95 % confidence level.
Resumo:
A novel sensitive and relatively selective kinetic method is presented for the determination of V(V), based on its catalytic effect on the oxidation reaction of Ponceau Xylydine by potassium bromate in presence of 5-sulfosalicylic acid (SSA) as activator. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of Ponceau Xylydine at 640 nm between 0.5 to 7 min (the fixed time method) in H3PO4 medium at 25ºC. The effect of various parameters such as concentrations of H3PO4, SSA, bromate and Ponceau Xylydine, temperature and ionic strength on the rate of net reaction were studied. The method is free from most interferences, especially from large amounts of V(IV). The decrease in absorbance is proportional to the concentration of V(V) over the entire concentration range tested (1-15 ng mL−1) with a detection limit of 0.46 ng mL-1 (according to statistical 3Sblank/k criterion) and a coefficient of variation (CV) of 1.8% (for ten replicate measurement at 95% confidence level). The proposed method suffers few interferences such as Cr(VI) and Hg(II) ions. The method was successfully applied to the determination of V(V) in tap water, drinking water, bottled mineral water samples and a certified standard reference material such as SRM-1640 with satisfactory results. The vanadium contents of water samples were also determined by FAAS for a comparison. The recovery of spiked vanadium(V) was found to be quantitative and the reproducibility was satisfactory. It was observed that the results of the SRM 1640 were in good agreement with the certified value.
Resumo:
The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).
Resumo:
The concern related to environment is growing. Due to this, it is needed to determine chemical elements in a large range of concentration. The neutron activation technique (NAA) determines the elemental composition by the measurement of artificial radioactivity in a sample that was submitted to a neutron flux. NAA is a sensitive and accurate technique with low detection limits. An example of application of NAA was the measurement of concentrations of rare earth elements (REE) in waste samples of phosphogypsum (PG) and cerrado soil samples (clayey and sandy soils). Additionally, a soil reference material of the International Atomic Energy Agency (IAEA) was also analyzed. The REE concentration in PG samples was two times higher than those found in national fertilizers, (total of 4,000 mg kg-1 ), 154 times greater than the values found in the sandy soil (26 mg kg-1 ) and 14 times greater than the in clayey soil (280 mg kg-1 ). The experimental results for the reference material were inside the uncertainty of the certified values pointing out the accuracy of the method (95%). The determination of La, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and Lu in the samples and reference material confirmed the versatility of the technique on REE determination in soil and phosphogypsum samples that are matrices for agricultural interest.
Resumo:
In recent years, the Brazilian Health Ministry and the World Health Organization have supported research into new technologies that may contribute to the surveillance, new treatments, and control of visceral leishmaniasis within the country. In light of this, the aim of this study was to isolate compounds from plants of the Caatinga biome, and to investigate their toxicity against promastigote and amastigote forms of Leishmania infantum chagasi, the main responsible parasite for South American visceral leishmaniasis, and evaluate their ability to inhibit acetylcholinesterase enzyme (AChE). A screen assay using luciferase-expressing promastigote form and an in situ ELISA assay were used to measure the viability of promastigote and amastigote forms, respectively, after exposure to these substances. The MTT colorimetric assay was performed to determine the toxicity of these compounds in murine monocytic RAW 264.7 cell line. All compounds were tested in vitro for their anti-cholinesterase properties. A coumarin, scoparone, was isolated from Platymiscium floribundum stems, and the flavonoids rutin and quercetin were isolated from Dimorphandra gardneriana beans. These compounds were purified using silica gel column chromatography, eluted with organic solvents in mixtures of increasing polarity, and identified by spectral analysis. In the leishmanicidal assays, the compounds showed dose-dependent efficacy against the extracellular promastigote forms, with an EC50 for scoporone of 21.4µg/mL, quercetin and rutin 26 and 30.3µg/mL, respectively. The flavonoids presented comparable results to the positive control drug, amphotericin B, against the amastigote forms with EC50 for quercetin and rutin of 10.6 and 43.3µg/mL, respectively. All compounds inhibited AChE with inhibition zones varying from 0.8 to 0.6, indicating a possible mechanism of action for leishmacicidal activity.
Resumo:
The aim of this study is to report cases of spontaneous poisoning of cattle by Ricinus communis (castor beans) in Paraíba, a semiarid region of northeastern Brazil. The cases were observed in 2 herds on neighboring properties in 2013. Clinical signs developed within 6-24 h and consisted of weakness, tachycardia, dyspnea, profuse watery diarrhea, dehydration, depression, instability, cramps, permanent lateral recumbency and death within 48-72 h. Of the 60 cattle at risk, 19 were affected and 14 died. Five fully recovered after the course of 12 days. Three animals were necropsied. The main gross lesions were hemopericardium, hemothorax, pulmonary edema, petechial hemorrhages in the epicardium and endocardium, ecchymoses at the papillary muscles and suffusions on the intercostal muscles. Hemorrhages were also observed in the abdominal cavity, spleen and mucosa of the abomasum and small intestine. The rumen content was liquid with a large amount of castor bean seeds. There were circular, whitish and focally diffuse areas in the liver parenchyma. The main microscopic lesions consisted of multifocal coagulative myocardial necrosis with the presence of mononuclear cell infiltration and varying degrees of bleeding between cardiac muscle fibers. The abomasum and small intestine mucosae and submucosa had mild edema and mononuclear and polymorphonuclear inflammatory cell infiltration. The diagnosis of R. communis was based on the history of plant consumption, clinical signs, pathology of the disease and the presence of large amounts of castor bean seeds in the forestomachs.
Resumo:
Currently, there is a growing interest in medicinal plants, because of an increased demand for alternate therapies. In this study, the antimicrobial activity and toxicity of the essential oil of Lippia origanoides (L. origanoides) were investigated. The essential oil of L. origanoides was extracted by steam-dragging distillation and its constituents were identified by chromatography coupled with mass spectrometry. Among the 15 compounds identified, the most abundant were carvacrol (29.00%), o-cymene (25.57%), and thymol methyl ether (11.50%). The essential oil was studied in antimicrobial assays to determine the MIC and MBC. The results indicated that a concentration of 120μL/mL of oil was sufficient to inhibit the growth of the following microorganisms: Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) and Salmonella cholerasuis (ATCC 10708). Acute and chronic toxic effects of orally administered oil were investigated in Wistar rats by using standard methods. Doses of 30, 60 and 120mg/kg of the essential oil did not induce significant changes in weight, behavior or hematological and biochemical parameters in the animals. There were no signs of any histopathological changes to the liver, kidneys or heart of the treated rats, suggesting that Lippia origanoides oil is non-toxic after oral administration in acute or chronic toxicity studies. The results obtained in this study show that the essential oil of L. origanoides has a high safety margin, with no detectable toxic effects in rats treated with doses to 120mg/kg. In addition, L. origanoides oil demonstrated potent antimicrobial activity against S. aureus, E. coli and S. cholerasuis. Based on these findings, this essential oil may have practical application as a veterinary antimicrobial.
Resumo:
Abstract: In order to understand better the pathological aspects and spread of Pasteurella multocida type A as the primary cause of pneumonia in pigs, was made an experiment with intranasal inoculation of different concentrations of inocula [Group (G1): 108 Colony Forming Units (CFU)/ml; G2: 107 CFU/ml; G3: 106 CFU/ml and G4: 105 CFU/ml], using two pigs per group. The pigs were obtained from a high health status herd. Pigs were monitored clinically for 4 days and subsequently necropsied. All pigs had clinical signs and lesions associated with respiratory disease. Dyspnoea and hyperthermia were the main clinical signs observed. Suppurative cranioventral bronchopneumonia, in some cases associated with necrosuppurative pleuropneumonia, fibrinous pericarditis and pleuritic, were the most frequent types of lesion found. The disease evolved with septicaemia, characterized by septic infarctions in the liver and spleen, with the detection of P. multocida type A. In this study, P. multocida type A strain #11246 was the primary agent of fibrinous pleuritis and suppurative cranioventral bronchopneumonia, pericarditis and septicaemia in the pigs. All concentrations of inoculum used (105-108 CFU/ml) were able to produce clinical and pathological changes of pneumonia, pleuritis, pericarditis and septicemia in challenged animals.
Resumo:
Cardiac troponin (cTn) I and T are the recommended biomarkers for the diagnosis and risk stratification of patients with suspected acute coronary syndrome (ACS), a major cause of cardiovascular death and disability worldwide. It has recently been demonstrated that cTn-specific autoantibodies (cTnAAb) can negatively interfere with cTnI detection by immunoassays to the extent that cTnAAb-positive patients may be falsely designated as cTnI-negative. The aim of this thesis was to develop and optimize immunoassays for the detection of both cTnI and cTnAAb, which would eventually enable exploring the clinical impact of these autoantibodies on cTnI testing and subsequent patient management. The extent of cTnAAb interference in different cTnI assay configurations and the molecular characteristics of cTnAAbs were investigated in publications I and II, respectively. The findings showed that cTnI midfragment targeting immunoassays used predominantly in clinical practice are affected by cTnAAb interference which can be circumvented by using a novel 3+1-type assay design with three capture antibodies against the N-terminus, midfragment and C-terminus and one tracer antibody against the C-terminus. The use of this assay configuration was further supported by the epitope specificity study, which showed that although the midfragment is most commonly targeted by cTnAAbs, the interference basically encompasses the whole molecule, and there may be remarkable individual variation at the affected sites. In publications III and IV, all the data obtained in previous studies were utilized to develop an improved version of an existing cTnAAb assay and a sensitive cTnI assay free of this specific analytical interference. The results of the thesis showed that approximately one in 10 patients with suspected ACS have detectable amounts of cTnAAbs in their circulation and that cTnAAbs can inhibit cTnI determination when targeted against the binding sites of assay antibodies used in its immunological detection. In the light of these observations, the risk of clinical misclassification caused by the presence of cTnAAbs remains a valid and reasonable concern. Because the titers, affinities and epitope specificities of cTnAAbs and the concentration of endogenous cTnI determine the final effect of circulating cTnAAbs, appropriately sized studies on their clinical significance are warranted. The new cTnI and cTnAAb assays could serve as analytical tools for establishing the impact of cTnAAbs on cTnI testing and also for unraveling the etiology of cTn-related autoimmune responses.
Resumo:
Optical tracers in conjunction with fluorescence microscopy have become widely used to follow the movement of synaptic vesicles in nerve terminals. The present review discusses the use of these optical methods to understand the regulation of exocytosis and endocytosis of synaptic vesicles. The maintenance of neurotransmission depends on the constant recycling of synaptic vesicles and important insights have been gained by visualization of vesicles with the vital dye FM1-43. A number of questions related to the control of recycling of synaptic vesicles by prolonged stimulation and the role of calcium to control membrane internalization are now being addressed. It is expected that optical monitoring of presynaptic activity coupled to appropriate genetic models will contribute to the understanding of membrane traffic in synaptic terminals.
Resumo:
The effect of free cholesterol on the fatty acid composition and growth of rat fetal enterocytes was investigated in the absence and presence of 10% (v/v) fetal calf serum. Cholesterol caused a significant reduction of cell number after 6 and 12 h in culture. The fatty acid composition of enterocytes cultured in the presence of serum was also changed by the presence of 20 µM cholesterol. The fatty acid profile was determined by HPLC using fluorescence detection (325 nm excitation and 395 nm emission). Cholesterol (20 µM) increased the proportion (given in percentage of the total fatty acids) of the following fatty acids in cultured cells: lauric (by 42%), oleic (by 34%), linoleic (by 44%) and gamma-linolenic (by 20%) acids and reduced the proportion of palmitic (by 12%), stearic (by 20%), arachidonic (by 21%) and docosahexaenoic (by 44%) acids. In addition to modifying the content of individual fatty acids, cholesterol increased the polyunsaturated/saturated fatty acid ratio from 0.48 to 0.67 and the unsaturation index from 67.12 to 75.30. This is the first evidence that cholesterol modifies fatty acid composition possibly via de novo fatty acid synthesis and desaturation.