930 resultados para Carbon-supported Pt nanoparticles
Resumo:
A novel approach to the preparation of polyethylene (PE) nanocomposites, with montmorillonite/silica hybrid (MT-Si) supported catalyst, was developed. MT-Si was prepared by depositing silica nanoparticles between galleries of the MT. A common zirconocene catalyst [bis(cyclopentadienyl)zirconium dichloride/methylaluminoxane] was fixed on the MT-Si surface by a simple method. After ethylene polymerization, two classes of nanofillers (clay layers and silica nanoparticles) were dispersed concurrently in the PE matrix and PE/clay-silica nanocomposites were obtained. Exfoliation of the clay layers and dispersion of the silica nanoparticles were examined with transmission electron microscopy. Physical properties of the nanocomposites were characterized by tensile tests, dynamic mechanical analysis, and DSC. The nanocomposites with a low nanofiller loading (<10 wt %) exhibited good mechanical properties. The nanocomposite powder produced with the supported catalyst had a granular morphology and a high bulk density, typical of a heterogeneous catalyst system.
Resumo:
Room-temperature ionic liquids (RTILs) are liquids at room temperature and represent a new class of nonaqueous but polar solvents with high ionic conductivity. The conductivity property of carbon nanotubes/RTILs and carbon microbeads/RTILs composite materials has been studied using ac impedance technology. Enzyme coated by RTILs-modified gold and glassy carbon electrodes allow efficient electron transfer between the electrode and the protein and also catalyze the reduction Of O-2 and H2O2,
Resumo:
The preparative procedure of a kind of phospholipid/alkanethiol bilayers on a planar macroelectrode was copied to the as-prepared gold colloid electrodes. The electrochemical and spectral results show that the bilayers on colloid electrodes are interdigited, which are different from their 2-D counterparts on a planar macroelectrode.
Resumo:
In this paper we report the rational design and fabrication of high-quality core-shell Au-Pt nanoparticle film. Such film shows highly efficient catalytic properties and excellent surface-enhanced Raman scattering (SERS) ability.
Resumo:
Single-walled carbon nanotubes (SWNTs) were covalently functionalized with biocompatible poly-L-lysine, which is useful in promoting cell adhesion. SWNTs played an important role as connectors to assemble these active amino groups of poly-L-lysine, which provided a relative "friendly" and "soft" environment for further derivation, such as attaching bioactive molecules. As an application example, by further linking peroxidase, an amplified biosensing toward H2O2 concerning this assembly was investigated.
Resumo:
We report a simple procedure to assemble gold nanoparticles into hollow tubular morphology with micrometer scale, wherein the citrate molecule is used not only as a reducing and capping agent, but also as an assembling template. The nanostructure and growth mechanism of microtubes are explored via SEM, TEM, FTIR spectra, and UV-vis spectra studies. The incorporation of larger gold nanoparticles by electroless plating results in an increase in the diameter of microtubes from 900 nm to about 1.2 mu m. The application of the microtubes before and after electroless plating in surface-enhanced Raman scattering (SERS) is investigated by using 4-aminothiophenol (4-ATP) as probe molecules. The results indicate that the microtubes both before and after electroless plating can be used as SERS substrates. The microtubes after electroless plating exhibit excellent enhancement ability.
Resumo:
We developed a reproducible, noncovalent strategy to functionalize multiwalled carbon nanotubes (MWNTs) via embedding nanotubes in polysiloxane shells. (3-Aminopropyl)triethoxysilane molecules adsorbed to the nanotube surfaces via hydrophobic interactions are polymerized simply by acid catalysis and form a thin polysiloxane layer. On the basis of the embedded MWNTs, negatively charged gold nanoparticles are anchored to the nanotube surfaces via electrostatic interactions between the protonated amino groups and the gold nanoparticles. Furthermore, these gold nanoparticles can further grow and magnify along the nanotubes through heating in HAuCl4 aqueous solution at 100 degrees C; as a result these nanoparticles are joined to form continuous gold nanowires with MWNTS acting as templates.
Resumo:
Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers.
Resumo:
Didodecyldimethylammonium bromide (DDAB) lipid bilayer-protected gold nanoparticles (AuNPs), which were stable and hydrophilic, were synthesized by in situ reduction of HAuCl4 with NaBH4 in an aqueous medium in the presence of DDAB. As-prepared nanoparticles were characterized by UV-vis spectra, transmission electron microscopy, dynamic light scattering analysis, and X-ray photoelectron spectroscopy. All these data supported the formation of AuNPs. Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis/thermogravimetric analysis data revealed that DDAB existed in a bilayer structure formed on the particle surface, resulting in a positively charged particle surface. The FTIR spectra also indicated that the DDAB bilayer coated on the surface of AuNPs was probably in the ordered gel phase with some end-gauche defects. On the basis of electrostatic interactions between such AuNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AuNP)(n) multilayers on a cationic polyelectrolyte poly(ethylenimine) coated indium tin oxide substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-vis spectra and atomic force microscopy.
Resumo:
It is suggested that a Pt/C cathodic catalyst for the direct methanol fuel cell (DMFC) can be prepared with a pre-precipitation method, in which, H2PtCl6 is precipitated onto the carbon black as (NH4)(2)PtCl6 before H2PtCl6 is reduced to Pt. The electrocatalytic activity of this Pt/C-A catalyst for oxygen reduction is excellent because the Pt/C catalyst prepared with this pre-precipitation method possesses a small average particle size, low relative crystalinity and a large electrochemically active surface area. In addition, the pre-precipitation method is simple and economical and it can be used to prepare a Pt/C catalyst on a large scale.
Resumo:
An air- and water-stable PEG-supported bidentate nitrogen ligand is prepared and its applications in the palladium-catalyzed Suzuki reaction of aryl halides with arylboronic acids in PEG and Suzuki-type reaction of aryl halides with sodium tetraphenylborate in aqueous media are reported. The homogeneous catalyst system is environmentally friendly and offers the advantages of high activity, reusability and easy separation.
Resumo:
The interaction of chlorpromazine (CPZ) with supported bilaver lipid (dipalmitoyphosphatidylcholine) membrane (s-BLM) on the glassy carbon electrode (GCE) was investigated using cyclic voltammetry and ac impedance spectroscopy. The experimental data, based on the voltammetric response of Ru(NH3)(6)(3+) associated with the oxidation of CPZ on the electrode, indicated that the interaction of CPZ with s-BLM was concentration and time dependant. The interaction between them could be divided into three stages by the concentration of CPZ: low, middle and high concentration. At the first stage, s-BLM was not affected by CPZ and the interaction was only a penetration of a small quantity of CPZ molecule into s-BLM. At the second stage, the defects formed in s-BLM due to the penetration of more CPZ molecule into s-BLM. At the last stage, a high CPZ:lipid ratio reached in s-BLM, resulting in the solubilization of s-BLM. The interaction time had different effect at three stages.
Resumo:
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: -0.2 V) was from 1.67 x 10(-5) to 7.40 x 10(-4) M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.
Resumo:
A simple and convenient method for preparation of cobalt hexacyanoferrate (CoHCF) nanowires by electrodeposition was reported. Multiwall carbon nanotubes (MWNTs) were used as templates to fabricate CoHCF nanowires. MWNTs could affect the size of CoHCF nanoparticles and made them grow on the sidewalls of carbon nanotubes during the process of electrodeposition. Thus CoHCF nanowires could be obtained by this method. Field-emission scanning electron microscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize these nanowires. These results showed the CoHCF nanowires could be easily and successfully obtained and it gave a novel approach to prepare inorganic nanowires.
Resumo:
A straightforward combination of the seeding growth method and replacement reaction allowed for the formation of a nanorattle composed of a gold core and Pt/Ag shell. The size, structure, and composition of the Pt/Ag rattle-type nanostructure were confirmed by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectrometry.