995 resultados para Bulk carrier cargo ships


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Label-free detection of cancer biomarkers using low cost biosensors has promising applications in clinical diagnostics. In this work, ZnO-based thin film bulk acoustic wave resonators (FBARs) with resonant frequency of ∼1.5 GHz and mass sensitivity of 0.015 mg/m2 (1.5 ng/cm2) have been fabricated for their deployment as biosensors. Mouse monoclonal antibody, anti-human prostate-specific antigen (Anti-hPSA) has been used to bind human prostate-specific antigen (hPSA), a model cancer used in this study. Ellipsometry was used to characterize and optimise the antibody adsorption and antigen binding on gold surface. It was found that the best amount of antibody at the gold surface for effective antigen binding is around 1 mg/m2, above or below which resulted in the reduced antigen binding due to either the limited binding sites (below 1 mg/m2) or increased steric effect (above 1 mg/m2). The FBAR data were in good agreement with the data obtained from ellipsometry. Antigen binding experiments using FBAR sensors demonstrated that FBARs have the capability to precisely detect antigen binding, thereby making FBARs an attractive low cost alternative to existing cancer diagnostic sensors. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the optimization of interleaved Mach-Zehnder silicon carrier depletion electro-optic modulator. Following the simulation results we demonstrate a phase shifter with the lowest figure of merit (modulation efficiency multiplied by the loss per unit length) 6.7 V-dB. This result was achieved by reducing the junction width to 200 nm along the phase-shifter and optimizing the doping levels of the PN junction for operation in nearly fully depleted mode. The demonstrated low FOM is the result of both low V(π)L of ~0.78 Vcm (at reverse bias of 1V), and low free carrier loss (~6.6 dB/cm for zero bias). Our simulation results indicate that additional improvement in performance may be achieved by further reducing the junction width followed by increasing the doping levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We design, optimize and demonstrate a highly efficient carrier-depletion silicon Mach-Zehnder modulator with very low VπL of ~0.2Vcm. Design consideration, fabrication process and experimental results will be presented. © OSA 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant reduction of the bulk resistivity in a ferroelectric Pb(Zr 0.45Ti0.55)O3 thin film is observed before the remnant polarization started to decrease noticeably at the onset of its fatigue switching process. It is associated with the increase of charge carriers within the central bulk region of the film. The decrease of bulk resistivity would result in the increase of Joule heating effect, improving the temperature of the thin film, which is evaluated by the heat conduction analysis. The Joule heating effect in turn accelerates the polarization reduction, i.e. fatigue. Enhancing the heat dissipation of a ferroelectric capacitor is shown to be able to improve the device's fatigue endurance effectively. © 2013 Chinese Physical Society and IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular phosphatases are an important part of the phosphorus cycle in aquatic environments. Phosphatase activity (PA) in plankton was studied in seven subtropical shallow lakes of different exploitation management and trophic status in the urban area of Wuhan City. Bulk PA was rather high (range 1.1-11 mu mol l(-1) h(-1)), although concentrations of soluble reactive phosphorus (SRP) were also high (range 27 mu g P l(-1) to similar to 1.5 mg P l(-1)) in all lakes. Cell-associated extracellular PA in phytoplankton was detected using the fluorescence-labelled enzyme activity technique. Phytoplankton species partly contributed to the bulk PA. We found explicit differences in the presence of cell-associated phosphatase within the main phytoplankton groups; species belonging to Chlorophyta and Dinophyta were regularly phosphatase-positive, while Cyanophyta and Bacillariophyceae were phosphatase-negative in all but one case. Furthermore, there is a certain potential of extracellular phosphatases produced by heterotrophic nanoflagellates in most of the lakes. This new finding compromises the 'traditional' interpretation of bulk phosphatase data as being due to overall phytoplankton or bacterial P regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of polymer-fullerene bulk heterojunction (BHJ) solar cells is strongly dependent on the vertical distribution of the donor and acceptor regions within the BHJ layer. In this work, we investigate in detail the effect of the hole transport layer (HTL) physical properties and the thermal annealing on the BHJ morphology and the solar cell performance. For this purpose, we have prepared solar cells with four distinct formulations of poly(3,4- ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) buffer layers. The samples were subjected to thermal annealing, applied either before (pre-annealing) or after (post-annealing) the cathode metal deposition. The effect of the HTL and the annealing process on the BHJ ingredient distribution - namely, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) - has been studied by spectroscopic ellipsometry and atomic force microscopy. The results revealed P3HT segregation at the top region of the films, which had a detrimental effect on all pre-annealed devices, whereas PCBM was found to accumulate at the bottom interface. This demixing process depends on the PEDOT:PSS surface energy; the more hydrophilic the surface the more profound is the vertical phase separation within the BHJ. At the same time those samples suffer from high recombination losses as evident from the analysis of the J-V measurements obtained in the dark. Our results underline the significant effect of the HTL-active and active-ETL (electron transport layer) interfacial composition that should be taken into account during the optimization of all polymer-fullerene solar cells. © 2012 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical-looping combustion (CLC) has the inherent property of separating the product CO2 from flue gases. Instead of air, it uses an oxygen carrier, usually in the form of a metal oxide, to provide oxygen for combustion. All techniques so far proposed for chemical looping with solid fuels involve initially the gasification of the solid fuel in order for the gaseous products to react with the oxygen carrier. Here, the rates of gasification of coal were compared when gasification was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. This enabled an examination of the ability of chemical looping materials to enhance the rate of gasification of solid fuels. Batch gasification and chemical-looping combustion experiments with a German lignite and its char are reported, using an electrically-heated fluidised bed reactor at temperatures from 1073 to 1223 K. The fluidising gas was CO2 in nitrogen. The kinetics of the gasification were found to be significantly faster in the presence of the oxygen carrier, especially at temperatures above 1123 K. A numerical model was developed to account for external and internal mass transfer and for the effect of the looping agent. The model also included the effects of the evolution of the pore structure at different conversions. The presence of Fe2O3 led to an increase in the rate of gasification because of the rapid oxidation of CO by the oxygen carrier to CO2. This resulted in the removal of CO and maintained a higher mole fraction of CO2 in the mixture of gas around the particle of char, i.e. within the mass transfer boundary layer surrounding the particle. This effect was most prominent at about 20% conversion when (i) the surface area for reaction was at its maximum and (ii) because of the accompanying increase in porosity and pore size, intraparticle resistance to gas mass transfer within the particle of char had fallen, compared with that in the initial particle. Excellent agreement was observed between the rates predicted by the numerical model and those observed experimentally. ©2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dithiophene donor-acceptor copolymers that are bridged either with carbon (C-PCPDTBT) or silicon atoms (Si-PCPDTBT) belong to a promising family of materials for use in photoactive layers for organic photovoltaic cells (OPVs). In this work, we implement the non-destructive Spectroscopic Ellipsometry technique in the near infrared to the far ultraviolet spectral region in combination with advanced theoretical modeling to investigate the vertical distribution of the C-PCPDTBT and Si-PCPDTBT polymer and fullerene ([6,6]-phenyl C71-butyric acid methyl ester - PC70BM) phases in the blend, as well as the effect of the polymer-to-fullerene ratio on the distribution mechanism. It was found that the C-PCPDTBT:PC70BM blends have donor-enriched top regions and acceptor-enriched bottom regions, whereas the donor and acceptor phases are more homogeneously intermixed in the Si-PCPDTBT:PC70BM blends. We suggest that the chemical incompatibility of the two phases as expressed by the difference in their surface energy, may be a key element in promoting the segregation of the lower surface phase to the top region of the photoactive layer. We found that the increase of the photoactive layer thickness reduces the polymer enrichment at the cathode, producing a more homogeneous phase distribution of donor and acceptor in the bulk that leads to the increase of the OPV efficiency. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2013 IEEE. The world's first bulk-type fully high temperature superconducting synchronous motor (HTS-SM) was assembled and tested in our laboratory at the University of Cambridge. The fully HTS-SM was designed with 75 Y123 HTS bulks mounted on the surface of the rotor and six air core 2G HTS racetrack coils used for stator windings. We successfully applied a light fan load test for this fully HTS-SM at its operating temperature of 77 K. The detected decay of the trapped magnetic flux densities at the centre of the HTS bulks was up to 16.5% after 5 h of synchronous rotation. Due to the high current density of the HTS material, the ac stator field for the 2G HTS winding was 49.2% stronger compared with a comparable copper winding. In the meantime, we estimated that the efficiency was about 86% potentially under stable low frequency rotation at 150 r/min. The results show that the performance of this HTS motor is acceptable for practical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of processing and PFM techniques for practical bulk superconductor applications. © 2014 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell's algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of large-grain (RE)Ba2Cu3O7-δ ((RE)BCO; RE = rare earth) bulk superconductors to trap magnetic fields is determined by their critical current. With high trapped fields, however, bulk samples are subject to a relatively large Lorentz force, and their performance is limited primarily by their tensile strength. Consequently, sample reinforcement is the key to performance improvement in these technologically important materials. In this work, we report a trapped field of 17.6 T, the largest reported to date, in a stack of two silver-doped GdBCO superconducting bulk samples, each 25 mm in diameter, fabricated by top-seeded melt growth and reinforced with shrink-fit stainless steel. This sample preparation technique has the advantage of being relatively straightforward and inexpensive to implement, and offers the prospect of easy access to portable, high magnetic fields without any requirement for a sustaining current source. © 2014 IOP Publishing Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the lineshape analysis of the beat signal between the optical carrier and the shifted and delayed side-bands produced by sinusoidal amplitude modulation. It is shown that the beat signal has a typical lineshape with a very narrow delta-peak superposed on a quasi-Lorentzian profile. Theoretical explanation for the appearance of this peak has been given based on optical spectral structure constructed by a large number of optical wave trains. It is predicted that the delta-peak is originated from the beat between the wave trains in the carrier and those in the delayed sidebands when their average coherence length is longer than the delay line. Experiments carried out using different delay lines clearly show that the delta-peak is always located at the modulation frequency and decreases with the increasing delay line. Our analysis explicitly indicates that the linewidth is related to the observation time. It is also suggested that the disappearance of the delta-peak can be used as the criterion of coherence elimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using spatially resolved cathodoluminescence spectroscopy, we investigate the spatial luminescence distribution in a fully strained (In,Ga)N layer, in particular, its correlation with the distribution of threading dislocations (TDs). Regarding the impact of TDs on the luminescence properties, we can clearly distinguish between pure edge-type TDs and TDs with screw component. At the positions of both types of TDs, we establish nonradiative recombination sinks. The radius for carrier capture is at least four times larger for TDs with screw component as for pure edge-type TDs. The large capture radius of the former is due to a spiral-like growth mode resulting in an increase in the In content in the center of the spiral domains in comparison to their periphery.