926 resultados para Bone Marrow Transplantation
Resumo:
The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.
Resumo:
Mesenchymal stem/stromal cells (MSC) are rapidly becoming a leading candidate for use in tissue regeneration, with first generation of therapies being approved for use in orthopaedic repair applications. Capturing the full potential of MSC will likely require the development of novel in vitro culture techniques and devices. Herein we describe the development of a straightforward surface modification of an existing commercial product to enable the efficient study of three dimensional (3D) human bone marrow-derived MSC osteogenic differentiation. Hundreds of 3D microaggregates, of either 42 or 168 cells each, were cultured in osteogenic induction medium and their differentiation was compared with that occurring in traditional two dimensional (2D) monolayer cultures. Osteogenic gene expression and matrix composition was significantly enhanced in the 3D microaggregate cultures. Additionally, BMP-2 gene expression was significantly up-regulated in 3D cultures at day 3 and 7 by approximately 25- and 30-fold, respectively. The difference in BMP-2 gene expression between 2D and 3D cultures was negligible in the more mature day 14 osteogenic cultures. These data support the notion that BMP-2 autocrine signalling is up-regulated in 3D MSC cultures, enhancing osteogenic differentiation. This study provides both mechanistic insight into MSC differentiation, as well as a platform for the efficient generation of microtissue units for further investigation or use in tissue engineering applications.
Resumo:
Divalent cobalt ions (Co2+) have been shown to possess the capacity to induce angiogenesis by activating hypoxia inducible factor-1α (HIF-1α) and subsequently inducing the production of vascular endothelial growth factor (VEGF). However, there are few reports about Co-containing biomaterials for inducing in vitro angiogenesis. The aim of the present work was to prepare Co-containing β-tricalcium phosphate (Co-TCP) ceramics with different contents of calcium substituted by cobalt (0, 2, 5 mol%) and to investigate the effect of Co substitution on their physicochemical and biological properties. Co-TCP powders were synthesized by a chemistry precipitation method and Co-TCP ceramics were prepared by sintering the powder compacts. The effect of Co substitution on phase transition and the sintering property of the β-TCP ceramics was investigated. The proliferation and VEGF expression of human bone marrow mesenchymal stem cells (HBMSCs) cultured with both powder extracts and ceramic discs of Co-TCP was further evaluated. The in vitro angiogenesis was evaluated by the tube-like structure formation of human umbilical vein endothelial cells (HUVECs) cultured on ECMatrix™ in the presence of powder extracts. The results showed that Co substitution suppressed the phase transition from β- to α-TCP. Both the powder extracts and ceramic discs of Co-TCP had generally good cytocompatibility to support HBMSC growth. Importantly, the incorporation of Co into β-TCP greatly stimulated VEGF expression of HBMSCs and Co-TCP showed a significant enhancement of network structure formation of HUVECs compared with pure TCP. Our results suggested that the incorporation of Co into bioceramics is a potential viable way to enhance angiogenic properties of biomaterials. Co-TCP bioceramics may be used for bone tissue regeneration with improved angiogenic capacity.
Resumo:
It is of great importance to develop multifunctional bioactive scaffolds, which combine angiogenesis capacity, osteostimulation, and antibacterial properties for regenerating lost bone tissues. In order to achieve this aim, we prepared copper (Cu)-containing mesoporous bioactive glass (Cu-MBG) scaffolds with interconnective large pores (several hundred micrometer) and well-ordered mesopore channels (around 5 nm). Both Cu-MBG scaffolds and their ionic extracts could stimulate hypoxia-inducible factor (HIF)-1a and vascular endothelial growth factor(VEGF) expression in human bone marrow stromal cells(hBMSCs). In addition, both Cu-MBG scaffolds and their ionic extracts significantly promoted the osteogenic differentiation of hBMSCs by improving their bone-related gene expression (alkaline phosphatase (ALP), osteopontin(OPN) and osteocalcin (OCN)). Furthermore, Cu-MBG scaffolds could maintain a sustained release of ibuprofen and significantly inhibited the viability of bacteria. This study indicates that the incorporation of Cu2þ ions into MBG scaffolds significantly enhances hypoxia-like tissue reaction leading to the coupling of angiogenesis and osteogenesis. Cu2þ ions play an important role to offer the multifunctional properties of MBG scaffold system. This study has demonstrated that it is possible to develop multifunctional scaffolds by combining enhanced angiogenesis potential, osteostimulation, and antibacterial properties for the treatment of large bone defects.
Resumo:
Background: Mesenchymal stromal cells (MSC) with similar properties to bone marrow derived mesenchymal stromal cells (BM-MSC) have recently been grown from the limbus of the human cornea. We presently contribute to this novel area of research by evaluating methods for culturing human limbal MSC (L-MSC). Methods: Four basic strategies are compared: serum-supplemented medium (10% foetal bovine serum; FBS), standard serum-free medium supplemented with B-27, epidermal growth factor, and fibroblast growth factor 2, or one of two commercial serum-free media including Defined Keratinocyte Serum Free Medium (Invitrogen), and MesenCult-XF (Stem Cell Technologies). The phenotype of resulting cultures was examined using photography, flow cytometry (for CD34, CD45, CD73, CD90, CD105, CD141, CD271), immunocytochemistry (α-sma), differentiation assays (osteogenesis, adipogenesis, chrondrogenesis), and co-culture experiments with human limbal epithelial (HLE) cells. Results: While all techniques supported to varying degrees establishment of cultures, sustained growth and serial propagation was only achieved in 10% FBS medium or MesenCult-XF medium. Cultures established in 10% FBS medium were 70-80% CD34-/CD45-/CD90+/CD73+/CD105+, approximately 25% α-sma+, and displayed multi-potency. Cultures established in MesenCult-XF were >95% CD34-/CD45-/CD90+/CD73+/CD105+, 40% CD141+, rarely expressed α-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of MesenCult-XF-grown L-MSC. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker ∆Np63, along with the corneal differentiation marker cytokeratin 3. Conclusions: We conclude that MesenCult-XF® is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells.
Resumo:
Polyvinylpyrrolidone–iodine (Povidone-iodine, PVP-I) is widely used as an antiseptic agent for lavation during joint surgery; however, the biological effects of PVP–I on cells from joint tissue are unknown. This study examined the biocompatibility and biological effects of PVP–I on cells from joint tissue, with the aim of optimizing cell-scaffold based joint repair. Cells from joint tissue, including cartilage derived progenitor cells (CPC), subchondral bone derived osteoblast and bone marrow derived mesenchymal stem cells (BM-MSC) were isolated. The concentration-dependent effects of PVP–I on cell proliferation, migration and differentiation were evaluated. Additionally, the efficacy and mechanism of a PVP–I loaded bilayer collagen scaffold for osteochondral defect repair was investigated in a rabbit model. A micromolar concentration of PVP–I was found not to affect cell proliferation, CPC migration or extracellular matrix production. Interestingly, micromolar concentrations of PVP–I promote osteogenic differentiation of BM-MSC, as evidenced by up-regulation of RUNX2 and Osteocalcin gene expression, as well as increased mineralization on the three-dimensional scaffold. PVP–I treatment of collagen scaffolds significantly increased fibronectin binding onto the scaffold surface and collagen type I protein synthesis of cultured BM-MSC. Implantation of PVP–I treated collagen scaffolds into rabbit osteochondral defect significantly enhanced subchondral bone regeneration at 6 weeks post-surgery compared with the scaffold alone (subchondral bone histological score of 8.80 ± 1.64 vs. 3.8 ± 2.19, p < 0.05). The biocompatibility and pro-osteogenic activity of PVP–I on the cells from joint tissue and the enhanced subchondral bone formation in PVP–I treated scaffolds would thus indicate the potential of PVP–I for osteochondral defect repair.
Resumo:
One important challenge for regenerative medicine is to produce a clinically relevant number of cells with consistent tissue-forming potential. Isolation and expansion of cells from skeletal tissues results in a heterogeneous population of cells with variable regenerative potential. A more consistent tissue formation could be achieved by identification and selection of potent progenitors based on cell surface molecules. In this study, we assessed the expression of stage-specific embryonic antigen-4 (SSEA-4), a classic marker of undifferentiated stem cells, and other surface markers in human articular chondrocytes (hACs), osteoblasts, and bone marrow-derived mesenchymal stromal cells (bmMSCs) and characterized their differentiation potential. Further, we sorted SSEA-4-expressing hACs and followed their potential to proliferate and to form cartilage in vitro. Cells isolated from cartilage and bone exhibited remarkably heterogeneous SSEA-4 expression profiles in expansion cultures. SSEA-4 expression levels increased up to approximately 5 population doublings, but decreased following further expansion and differentiation cultures; levels were not related to the proliferation state of the cells. Although SSEA-4-sorted chondrocytes showed a slightly better chondrogenic potential than their SSEA-4-negative counterparts, differences were insufficient to establish a link between SSEA-4 expression and chondrogenic potential. SSEA-4 levels in bmMSCs also did not correlate to the cells' chondrogenic and osteogenic potential in vitro. SSEA-4 is clearly expressed by subpopulations of proliferating somatic cells with a MSC-like phenotype. However, the predictive value of SSEA-4 as a specific marker of superior differentiation capacity in progenitor cell populations from adult human tissue and even its usefulness as a stem cell marker appears questionable.
Resumo:
Purpose: We have evaluated the immunosuppressive properties of L-MSC with the view to using these cells in allogeneic cell therapies for corneal disorders. We hypothesized that L-MSC cultures would suppress T-cell activation, in a similar way to those established from human bone marrow (BM-MSC). Methods: MSC cultures were established from the limbal stroma of cadaveric donor eye tissue (up to 1 week postmortem) using either conventional serum-supplemented growth medium or a commercial serum-free medium optimized for bone marrow derived MSC (MesenCult-XF system). The MSC phenotype was examined by flow cytometry according to current and emerging markers for human MSC. Immunosuppressive properties were assessed using a mixed lymphocyte reaction (MLR) assay, whereby the white cell fraction from two immunologically incompatible blood donors are cultured together in direct contact with growth arrested MSC. T-cell activation (proliferation) was measured by uptake of tritiated thymidine. Human L-MSC were tested in parallel with human BM-MSC and rabbit L-MSC. Human and rabbit L-MSC were also tested for their ability to stimulate the growth of limbal epithelial (LE) cells in colony formation assays (for both human as well as rabbit LE cells). Results: L-MSC cultures were >95% negative for CD34, CD45 and HLA-DR and positive for CD73, CD90, CD105 and HLA-ABC. Modest levels (30%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented growth medium, but not those grown in MesenCult-XF. All MSC cultures derived from both human and rabbit tissue suppressed T-cell activation to varying degrees according to culture technique and species (MesenCult-XF >> serum-fed cultures, rabbit L-MSC >> human L-MSC). All L-MSC stimulated colony formation by LE cells irrespectively of the combination of cell species used. Conclusions: L-MSC display immunosuppressive qualities, in addition to their established non-immunogenic cell surface marker profile, and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic or even xenogeneic L-MSC in the treatment of corneal disorders.
Resumo:
Mesenchymal stem cells (MSCs) represent multipotent stromal cells that can differentiate into a variety of cell types, including osteoblasts (bone cells), chondrocytes (cartilage cells), and adipocytes (fat cells). Their multi-potency provides a great promise as a cell source for tissue engineering and cell-based therapy for many diseases, particularly bone diseases and bone formation. To be able to direct and modulate the differentiation of MSCs into the desired cell types in situ in the tissue, nanotechnology is introduced and used to facilitate or promote cell growth and differentiation. These nano-materials can provide a fine structure and tuneable surface in nanoscales to help the cell adhesion and promote the cell growth and differentiation of MSCs. This could be a dominant direction in future for stem cells based therapy or tissue engineering for various diseases. Therefore, the isolation, manipulation, and differentiation of MSCs are very important steps to make meaningful use of MSCs for disease treatments. In this chapter, we have described a method of isolating MSC from human bone marrow, and how to culture and differentiate them in vitro. We have also provided research methods on how to use MSCs in an in vitro model and how to observe MSC biological response on the surface of nano-scaled materials.
Resumo:
Osteocytes, known to act as the main regulators of bone homeostasis, have become a major focus in the field of bone research. Bioactive ceramics have been widely used for bone regeneration. However, there are few studies about the interaction of osteocytes with bioceramics. The effects of osteocytes on the in vitro and in vivo osteogenesis of bioceramics are also unclear. The aim of this study was to investigate the role of osteocytes on the b-tricalcium phosphate (b-TCP) stimulated osteogenesis. It was found that osteocytes responded to the b-TCP stimulation, leading to the release of Wnt (wingless-related MMTV integration site), which enhanced osteogenic differentiation of bone marrow stromal cells via Wnt signaling pathway. Receptor activator of nuclear factor kappa B ligand, an osteoclast inducer, was also upregulated, indicating that osteocytes would also participated in activation of osteoclasts, which played a major role in the degradation process of b-TCP and new bone remodeling. In vivo studies further demonstrated that when the material was completely embedded by newly formed bone, the only cell contacting with the material was osteocyte. However, the material would eventually be degraded and replaced by the new bone, requiring the participation of osteoclasts and osteoblasts, which were demonstrated by using immunostaining in this study. As the only cell contacting with the material, osteocytes probably acted in a regulatory role to regulate the surrounding osteoclasts and osteoblasts. Osteocytes were also found to participate in the maturation of osteoblasts and the mineralization process of biomaterials, by upregulating E11 (podoplanin) and dentin matrix protein 1 expression. These findings indicated that osteocytes involved in bone biomaterial-mediated osteogenesis and biomaterial degradation, providing valuable insights into the mechanism of material-stimulated osteogenesis, and a novel strategy to optimize the evaluating system for the biological properties of biomaterials.
Resumo:
Background Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies. Methodology/Principal Findings Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects. Conclusions These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life.
Resumo:
Scaffolding is an essential issue in tissue engineering and scaffolds should answer certain essential criteria: biocompatibility, high porosity, and important pore interconnectivity to facilitate cell migration and fluid diffusion. In this work, a modified solvent castingparticulate leaching out method is presented to produce scaffolds with spherical and interconnected pores. Sugar particles (200–300 lm and 300–500 lm) were poured through a horizontal Meker burner flame and collected below the flame. While crossing the high temperature zone, the particles melted and adopted a spherical shape. Spherical particles were compressed in plastic mold. Then, poly-L-lactic acid solution was cast in the sugar assembly. After solvent evaporation, the sugar was removed by immersing the structure into distilled water for 3 days. The obtained scaffolds presented highly spherical interconnected pores, with interconnection pathways from 10 to 100 lm. Pore interconnection was obtained without any additional step. Compression tests were carried out to evaluate the scaffold mechanical performances. Moreover, rabbit bone marrow mesenchymal stem cells were found to adhere and to proliferate in vitro in the scaffold over 21 days. This technique produced scaffold with highly spherical and interconnected pores without the use of additional organic solvents to leach out the porogen.
Resumo:
Bioreactors are defined as devices in which biological and/or biochemical processes develop under closely monitored and tightly controlled environmental and operating conditions (e.g. pH, temperature, mechanical conditions, nutrient supply and waste removal). In functional tissue engineering of musculoskeletal tissues, a bioreactor capable of controlling dynamic loading plays a determinant role. It has been shown that mechanical stretching promotes the expression of type I and III collagens, fibronectin, tenascin-C in cultured ligament fibroblasts (J.C.-H. Goh et al., Tissue Eng. 9 (2003), S31) and that human bone marrow mesenchymal stem cells (hBMMSC) – even in the absence of biochemical regulators – could be induced to differentiate into ligament-like fibroblast by the application of physiologically relevant cyclic strains (G. Vunjak-Novakovic et al., Ann. Rev. Biomed. Eng. 6 (2004), 131; H.A. Awad et al., Tissue Eng. 5 (1999), 267; R.G. Young et al., J. Orthop. Res. 16 (1998), 406). Different bioreactors are commercially available but they are too generic to be used for a given tissue, each tissue showing specific mechanical loading properties. In the case of ligament tissue engineering, the design of a bioreactor is still an open question. Our group proposes a bioreactor allowing cyclic traction–torsion on a scaffold seeded with stem cells.
Resumo:
Cisplatin and carboplatin are active in previously untreated patients with metastatic breast cancer (MBC) with mean response rates (RRs) of 50 and 32%, respectively. In pretreated patients the RR to cisplatin/carboplatin monotherapy declines markedly to <10%. Cisplatin and carboplatin have been combined with many other cytotoxics. In first-line setting high activity has been observed in combination with taxanes or vinorelbine (RRs consistently ∼60%). It appears that these newer combinations are superior to older regimens with etoposide (RRs 30 to 50%) or 5-fluorouracil (RRs 40 to 60%). Cisplatin-/carboplatin-based regimens with infusional 5-FU and epirubicin/paclitaxel/vinorelbine achieve high RRs of around 60 to 80%. However these regimens are difficult to administer in all patients because they require central venous access for continuous 5-FU infusion. In pretreated MBC the combinations of cisplatin-taxane/vinorelbine/gemcitabine or carboplatin-docetaxel/vinorelbine yield RRs of 40 to 50%, which are higher than those achieved with platinum-etoposide/5-FU. In locally advanced disease cisplatin-based regimens achieve very high RRs (>80%). This would suggest that in chemotherapy-naïve patients platinum-based therapy might have an important role to play. Additionally the synergy demonstrated between platinum compounds, taxanes and herceptin, in preclinical and clinical studies is of immense importance and the results of the two ongoing Breast Cancer International Research Group randomized phase III studies are eagerly awaited. These studies may help clarify the role of platinum compounds in the treatment of metastatic and possibly early breast cancer. © 2003 Elsevier Ltd. All rights reserved.
Resumo:
Aims: After failure of anthracycline- and taxane-based chemotherapy in metastatic breast cancer, treatment options until recently were limited. Until the introduction of capecitabine and vinorelbine, no standard regimen was available. We conducted a retrospective study to determine the efficacy and toxicity of platinum-based chemotherapy in metastatic breast cancer. Materials and methods: Forty-two women with metastatic breast cancer previously treated with anthracyclines (93%) and/or taxanes (36%) received mitomycin-vinblastine-cisplatin (MVP) (n = 23), or cisplatin-etoposide (PE) (n = 19), as first-, second- and third-line treatment at a tertiary referral centre between 1997 and 2002. Chemotherapy was given every 3 weeks as follows: mitomycin-C (8 mg/m 2) (cycles 1, 2, 4, 6), vinblastine (6 mg/m 2), and cisplatin (50 mg/m 2) all on day 1; and cisplatin (75 mg/m 2) and etoposide (100 mg/m 2) on day 1 and (100 mg/m 2) orally twice a day on days 2-3. Results: The response rate for 40 evaluable patients (MVP: n = 23; PE: n = 17) was 18% (95% confidence interval [CI]: 9-32%). The response rate to MVP was 13% (95% CI: 5-32%, one complete and two partial responses) and to PE 24% (10-47%, four partial responses). Disease stabilised in 43% (26-63%) and 47% (26-69%) of women treated with MVP and PE, respectively. After a median follow-up of 18 months, 37 women (MVP: n = 19; PE: n = 18) died from their disease. Median (range) progression-free survival and overall survival were 6 months (0.4-18.7) and 9.9 months (1.3-40.8), respectively. Median progression-free survival for the MVP and PE groups was 5.5 and 6.2 months (Log-rank, P = 0.82), and median overall survival was 10.2 and 9.4 months (Log-rank, P = 0.46), respectively. The main toxicity was myelosuppression. Grades 3-4 neutropenia was more common in women treated with PE than in women treated with MVP (74% vs 30%; P = 0.012), but the incidence of neutropenic sepsis, relative to the number of chemotherapy cycles, was low (7% overall). The toxicity-related hospitalisation rate was 1.2 admissions per six cycles of chemotherapy. No treatment-related deaths occurred. MVP and PE chemotherapy have modest activity and are safe in women with metastatic breast cancer. © 2005 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.