932 resultados para Bonding
Resumo:
Formal charge distributions in, and the electric dipole moments of, a few simple organogermanium compounds have been evaluated by the method of R. P. Smith et al. [J. Amer. Chem. Soc., 73(1951) 2263]. The difference between the experimental and calculated moments in the case of alkylhalogermanes is explained in terms of the pπ—dπ back bonding effect outweighing the electron releasing effect. In unsaturated compounds, the differences are attributed to possible mesmeric effects involving the expansion of the germanium valence shell.
Resumo:
The main purpose of the research was to illustrate chemistry matriculation examination questions as a summative assessment tool, and represent how the questions have evolved over the years. Summative assessment and its various test item classifications, Finnish goal-oriented curriculum model, and Bloom’s Revised Taxonomy of Cognitive Objectives formed the theoretical framework for the research. The research data consisted of 257 chemistry questions from 28 matriculation examinations between 1996 and 2009. The analysed test questions were formulated according to the national upper secondary school chemistry curricula 1994, and 2003. Qualitative approach and theory-driven content analysis method were employed in the research. Peer review was used to guarantee the reliability of the results. The research was guided by the following questions: (a) What kinds of test item formats are used in chemistry matriculation examinations? (b) How the fundamentals of chemistry are included in the chemistry matriculation examination questions? (c) What kinds of cognitive knowledge and skills do the chemistry matriculation examination questions require? The research indicates that summative assessment was used diversely in chemistry matriculation examinations. The tests included various test item formats, and their combinations. The majority of the test questions were constructed-response items that were either verbal, quantitative, or experimental questions, symbol questions, or combinations of the aforementioned. The studied chemistry matriculation examinations seldom included selected-response items that can be either multiple-choice, alternate choice, or matching items. The relative emphasis of the test item formats differed slightly depending on whether the test was a part of an extensive general studies battery of tests in sciences and humanities, or a subject-specific test. The classification framework developed in the research can be applied in chemistry and science education, and also in educational research. Chemistry matriculation examinations are based on the goal-oriented curriculum model, and cover relatively well the fundamentals of chemistry included in the national curriculum. Most of the test questions related to the symbolism of chemical equation, inorganic and organic reaction types and applications, the bonding and spatial structure in organic compounds, and stoichiometry problems. Only a few questions related to electrolysis, polymers, or buffer solutions. None of the test questions related to composites. There were not any significant differences in the emphasis between the tests formulated according to the national curriculum 1994 or 2003. Chemistry matriculation examinations are cognitively demanding. The research shows that the majority of the test questions require higher-order cognitive skills. Most of the questions required analysis of procedural knowledge. The questions that only required remembering or processing metacognitive knowledge, were not included in the research data. The required knowledge and skill level varied slightly between the test questions in the extensive general studies battery of tests in sciences and humanities, and subject-specific tests administered since 2006. The proportion of the Finnish chemistry matriculation examination questions requiring higher-order cognitive knowledge and skills is very large compared to what is discussed in the research literature.
Resumo:
In the present work the methods of relativistic quantum chemistry have been applied to a number of small systems containing heavy elements, for which relativistic effects are important. First, a thorough introduction of the methods used is presented. This includes some of the general methods of computational chemistry and a special section dealing with how to include the effects of relativity in quantum chemical calculations. Second, after this introduction the results obtained are presented. Investigations on high-valent mercury compounds are presented and new ways to synthesise such compounds are proposed. The methods described were applied to certain systems containing short Pt-Tl contacts. It was possible to explain the interesting bonding situation in these compounds. One of the most common actinide compounds, uranium hexafluoride was investigated and a new picture of the bonding was presented. Furthermore the rareness of uranium-cyanide compounds was discussed. In a foray into the chemistry of gold, well known for its strong relativistic effects, investigations on different gold systems were performed. Analogies between Au$^+$ and platinum on one hand and oxygen on the other were found. New systems with multiple bonds to gold were proposed to experimentalists. One of the proposed systems was spectroscopically observed shortly afterwards. A very interesting molecule, which was theoretically predicted a few years ago is WAu$_{12}$. Some of its properties were calculated and the bonding situation was discussed. In a further study on gold compounds it was possible to explain the substitution pattern in bis[phosphane-gold(I)] thiocyanate complexes. This is of some help to experimentalists as the systems could not be crystallised and the structure was therefore unknown. Finally, computations on one of the heaviest elements in the periodic table were performed. Calculation on compounds containing element 110, darmstadtium, showed that it behaves similarly as its lighter homologue platinum. The extreme importance of relativistic effects for these systems was also shown.
Resumo:
The amino terminal suzukacillin decapeptide fragment, Boc-Aib-Pro-Val-Aib-Val-Ala-Aib-Ala-Aib-Aitbh-eO Me, two pentapeptides Boc-AibPrc-Val-AibVal-OMe and Boc-Ala-AibAla-AibAibOMe, and the tripeptide Boc-Ala-AibAibOMe have been studied by 270-MHz 'H NMR spectroscopy. By use of solvent dependence of chemical shifts in a CDC13-(CD3),S0 system and temperature dependence of amide NH chemical shifts in (CD3),S0, the intramolecularly hydrogen bonded NH groups in these peptides have been identified. The tripeptide possesses one hydrogen bond, both pentapeptides show evidence for three intramolecular hydrogen bonds, and the decapeptide has eight NH groups participating in hydrogen bonding. An Ala( 1)-Aib(2) @ turn is proposed for the tripeptide. Both pentapeptides favor 310 helical conformations composed of three consecutive B turns. The decapeptide adopts a 310 helical conformation with some flexibility at the Va1(5)-Ala(6) segment. The proposed conformations are consistent with the known stereochemical preferences of Aib residues.
Resumo:
The importance of intermolecular interactions to chemistry, physics, and biology is difficult to overestimate. Without intermolecular forces, condensed phase matter could not form. The simplest way to categorize different types of intermolecular interactions is to describe them using van der Waals and hydrogen bonded (H-bonded) interactions. In the H-bond, the intermolecular interaction appears between a positively charged hydrogen atom and electronegative fragments and it originates from strong electrostatic interactions. H-bonding is important when considering the properties of condensed phase water and in many biological systems including the structure of DNA and proteins. Vibrational spectroscopy is a useful tool for studying complexes and the solvation of molecules. Vibrational frequency shift has been used to characterize complex formation. In an H-bonded system A∙∙∙H-X (A and X are acceptor and donor species, respectively), the vibrational frequency of the H-X stretching vibration usually decreases from its value in free H-X (red-shift). This frequency shift has been used as evidence for H-bond formation and the magnitude of the shift has been used as an indicator of the H-bonding strength. In contrast to this normal behavior are the blue-shifting H-bonds, in which the H-X vibrational frequency increases upon complex formation. In the last decade, there has been active discussion regarding these blue-shifting H-bonds. Noble-gases have been considered inert due to their limited reactivity with other elements. In the early 1930 s, Pauling predicted the stable noble-gas compounds XeF6 and KrF6. It was not until three decades later Neil Bartlett synthesized the first noble-gas compound, XePtF6, in 1962. A renaissance of noble-gas chemistry began in 1995 with the discovery of noble-gas hydride molecules at the University of Helsinki. The first hydrides were HXeCl, HXeBr, HXeI, HKrCl, and HXeH. These molecules have the general formula of HNgY, where H is a hydrogen atom, Ng is a noble-gas atom (Ar, Kr, or Xe), and Y is an electronegative fragment. At present, this class of molecules comprises 23 members including both inorganic and organic compounds. The first and only argon-containing neutral chemical compound HArF was synthesized in 2000 and its properties have since been investigated in a number of studies. A helium-containing chemical compound, HHeF, was predicted computationally, but its lifetime has been predicted to be severely limited by hydrogen tunneling. Helium and neon are the only elements in the periodic table that do not form neutral, ground state molecules. A noble-gas matrix is a useful medium in which to study unstable and reactive species including ions. A solvated proton forms a centrosymmetric NgHNg+ (Ng = Ar, Kr, and Xe) structure in a noble-gas matrix and this is probably the simplest example of a solvated proton. Interestingly, the hypothetical NeHNe+ cation is isoelectronic with the water-solvated proton H5O2+ (Zundel-ion). In addition to the NgHNg+ cations, the isoelectronic YHY- (Y = halogen atom or pseudohalogen fragment) anions have been studied with the matrix-isolation technique. These species have been known to exist in alkali metal salts (YHY)-M+ (M = alkali metal e.g. K or Na) for more than 80 years. Hydrated HF forms the FHF- structure in aqueous solutions, and these ions participate in several important chemical processes. In this thesis, studies of the intermolecular interactions of HNgY molecules and centrosymmetric ions with various species are presented. The HNgY complexes show unusual spectral features, e.g. large blue-shifts of the H-Ng stretching vibration upon complexation. It is suggested that the blue-shift is a normal effect for these molecules, and that originates from the enhanced (HNg)+Y- ion-pair character upon complexation. It is also found that the HNgY molecules are energetically stabilized in the complexed form, and this effect is computationally demonstrated for the HHeF molecule. The NgHNg+ and YHY- ions also show blue-shifts in their asymmetric stretching vibration upon complexation with nitrogen. Additionally, the matrix site structure and hindered rotation (libration) of the HNgY molecules were studied. The librational motion is a much-discussed solid state phenomenon, and the HNgY molecules embedded in noble-gas matrices are good model systems to study this effect. The formation mechanisms of the HNgY molecules and the decay mechanism of NgHNg+ cations are discussed. A new electron tunneling model for the decay of NgHNg+ absorptions in noble-gas matrices is proposed. Studies of the NgHNg+∙∙∙N2 complexes support this electron tunneling mechanism.
Resumo:
Even though cellulose is the most abundant polymer on Earth, its utilisation has some limitations regarding its efficient use in the production of bio-based materials. It is quite clear from statistics that only a relatively small fraction of cellulose is used for the production of commodity materials and chemicals. This fact was the driving force in our research into understanding, designing, synthesising and finding new alternative applications for this well-known but underused biomaterial. This thesis focuses on the developing advanced materials and products from cellulose by using novel approaches. The aim of this study was to investigate and explore the versatility of cellulose as a starting material for the synthesis of cellulose-based materials, to introduce new synthetic methods for cellulose modification, and to widen the already existing synthetic approaches. Due to the insolubility of cellulose in organic solvents and in water, ionic liquids were applied extensively as the reaction media in the modification reactions. Cellulose derivatives were designed and fine-tuned to obtain desired properties. This was done by altering the inherent hydrogen bond network by introducing different substituents. These substituents either prevented spontaneous formation of hydrogen bonding completely or created new interactions between the cellulose chains. This enabled spontaneous self-assembly leading to supramolecular structures. It was also demonstrated that the material properties of cellulose can be modified even those molecules with a low degree of substitution when highly hydrophobic films and aerogels were prepared from fatty acid derivatives of nanocellulose. Development towards advanced cellulose-based materials was demostrated by synthesising chlorophyllcellulose derivatives that showed potential in photocurrent generation systems. In addition, liquid crystalline cellulose derivatives prepared in this study, showed to function as UV-absorbers in paper.
Resumo:
Rare-gas chemistry is of growing interest, and the recent advances include the "insertion" of a Xe atom into OH and water in the rare-gas hydrides HXeO and HXeOH. The insertion of Xe atoms into the H-C bonds of hydrocarbons was also demonstrated for HXeCC, HXeCCH and HXeCCXeH, the last of which was the first rare-gas hydride containing two rare-gas atoms. We describe the preparation and characterization of a new rare-gas compound, HXeOXeH. HXeOXeH was prepared in solid xenon by photolysis of a suitable precursor, for example water, and subsequent mobilization of the photoproducts. The experimental identification was carried out by FTIR spectroscopy, isotopic substitution and by use of various precursors. The photolytical and thermal stability of the new rare-gas hydride was also studied. The experimental work was supported by extensive quantum chemical calculations provided by our co-workers. HXeOXeH forms in a cryogenic xenon matrix from neutral O and H atoms in a two-step diffusion-controlled process involving HXeO as an intermediate [reactions (1) and (2)]. This formation mechanism is unique in that a rare-gas hydride is formed from another rare-gas hydride. H + Xe + O → HXeO (1) HXeO + Xe + H → HXeOXeH (2) Similarly to other rare-gas hydrides, HXeOXeH has a strongly IR-active H-Xe stretching vibration, allowing its spectral detection at 1379.3 cm-1. HXeOXeH is a very high-energy metastable species, yet thermally more stable than many other rare-gas hydrides. The calculated bending barrier of 0.57 eV, is not enough to explain the observed stability, and HXeOXeH might be affected by additional stabilization from the solid xenon environment. Chemical bonding between xenon and environmentally abundant species like water is of particular importance due to the “missing-xenon” problem. The relatively high thermal stability of HXeOXeH compared to other oxygen containing rare-gas compounds is relevant in this respect. Our work also raises the possibility of polymeric (–Xe–O)n networks, similarly to the computationally studied (XeCC)n polymers.
Resumo:
The conformational analysis of d-pantothenic acid using classical semiempirical methods has been carried out. The pantothenic acid molecule can exist in the neutral form (I) or in the ionised form (II) with a deprotonated negatively charged carboxyl group. The neutral molecule as well as the anion is highly flexible and has an ensemble of several allowed conformations rather than one or two unique conformations. The distribution of allowed conformations indicate that the β-alanine as well as the pantoic acid part of the molecule prefers partially folded conformations. The conformation of the former is greatly affected by the ionisation state of the carboxyl group whereas that of the latter is not. Possibility of intramolecular hydrogen bonding in different allowed conformations has also been explored. A bifurcated hydrogen bond involving a carboxyl (or carboxylate) oxygen atom and a hydroxyl oxygen atom, as acceptors, and the amide nitrogen atom as the donor occurs frequently in both I and II. Amongst the two crystal structures containing pantothenic acid reported so far, the conformation of the molecule in l-lysine d-pantothenate lies in the allowed region and is stabilised by a bifurcated intramolecular hydrogen bond, whereas that in the calcium bromide salt falls in a disallowed region, presumably due to the requirement of tridentate metal coordination.
Resumo:
Mr=328.32, triclinic, P1, a=5.801 (1), b=7.977(1), c=9.110(2)A, ~t=102.33 (1), fl= 97.92 (1), y= 109.82 (1) °, v= 377.2 (1) A 3 at 293 K, Z=I, D x=1.45, D m=1.45 g cm -3, 2(MoKs)= 0.7107 A, ~ = 0.74 cm -1, F(000) = 174.0. R = 0.046 for 990 unique observed [F o > 4O(Fo)] reflections. The crystal structure is stabilized by extensive hydrogen bonding involving all N and O atoms.
Resumo:
The formal charge distributions in and the dipole moments of some organophosphines and arsines have been calculated, and the dipole moments of (p-chlorophenyl)dichlorophosphine (2.28 D) and (p-bromophenyl)dichlorophosphine (2.04 D) have been determined in benzene at 35° C. The differences between the observed and the calculated moments are explained in terms of dπ---pπ back-bonding and hyperconjugative effects in alkylhaloarsines. The mesomeric effects operating in the aromatic systems are evaluated by comparing the moments with those for the corresponding aliphatic systems. In unsaturated compounds the differences are attributed to mesomeric effects involving the expansion of arsenic valence shell.
Resumo:
Metallo tetraphenylporphyrins form I : I molecular complexes with 4,6-dinitrobenzofuroxan. The molecular association is described in terms of T-n. interaction with porphyrins functioning as donors. The association constants and thermodynamic parameters have been evaluated using optical absorption and 'H nmr spectral methods. Based on the binding constants, the donor ability of various metalloporphyrins can be arranged in the following order: Pd(I1) > Co(I1) > Cu(I1) > Ni(I1) - VO(1V) - 2H > Zn(l1). Electron paramagnetic resonance studies of the complexes reveal that the IT-complexation results in changes in the electronic structure of the central metal ions which are reflected in the changes in the M-N 5 bonding. The dipolar contribution to the acceptor proton chemical shifts in the CoTPP complex has been partitioned from ring current contributions using the shifts observed in the ZnTPP complex. The shifts, along with the line broadening ratios observed for the CoTPP complex, are used to arrive at the possible solution structures of the complexes.
Resumo:
The elastic constantsC 11,C 12 and C 44 of sodium chlorate single crystal have been evaluated using 10 MHz ultrasonic pulse echo superposition technique. The values are C 11=4.90,C 12=1.39,C 44=1.17 (× 1010 N/m 2) at 298 K and 6.15, 2.16, 1.32 (×1010 N/m 2) at 77 K. The data agree well with the values measured earlier up to 223 K. Brief mention is also made of the low temperature bonding problems in these soft crystals.
Resumo:
Single crystal electron spin resonance studies of Cu2+ doped ferroelectric ammonium sulphate ((NH4)2SO4, Tc = 223 K) are reported at 300 and 77 K. The Cu2+ ion is found to enter the lattice interstitially with a trigonal bipyramidal coordination. Proton superhyperfine interaction is found for magnetic field directions close to the a-axis. Changes are observed in the 77 K recordings indicating a distortion of the trigonal bipyramid consistent with crystal structure data. An increase of the proton superhyperfine constant in the ferroelectric phase is indicative of stronger hydrogen bonding. The Cu2+ ion doped as an impurity in a trigonal bipyramid environment in a diamagnetic host lattice is reported for the first time.
Resumo:
This paper reviews the recent research progress on multi-layer composite structures composed of variety of materials. The utilization of multi-layer composite system is found to be common in metal structures and pavement systems. The layer of composite structure designed to encounter heavy dynamic energy should have sufficient ductility to counteract the intensity of energy. Therefore, the selection of materials and enhancement of interface bonding become crucial and both are discussed in this paper. The failure modes have also been explored in conjunction with stresses at failures and inferred solutions are also revealed. The paper attempts to reveal all technical facts on multi-layer composite structure in a broad field.
Resumo:
Polypeptides with alternating L- and D-amino acid residues can take up stereochemically satisfactory coaxial double-helical structures, both antiparallel and parallel, which are stabilized by systematic interchain NH O hydrogen bonds. Semiempirical energy calculations over allowed regions of conformational space have yielded the characteristics of these double-helices. There are four possible types of antiparallel double-helices - A3, A4, A5 and A6, with n, the number of LD peptide units per turn, around 2.8, 3.6, 4.5 and 5.5 respectively, while for the parallel double-helices there are two types, P3 and P4, having similar helical parameters as in A3 and A4. The hydrogen-bonding scheme restricts the pitch in all the models to the narrow range of 10.0 to 11.5 Å. All these helices have large central cores whose radii increase proportionately with n. In this respect, A3 and A4 are suitable models for the structure of gramicidin A. In terms of their relative energies, antiparallel double-helices are marginally more stable than those with parallel strands. Our results indicate that the energy differences amongst the members in the antiparallel family are not significant and thus provide an explanation for the polymorphism reported for poly(γ-benzyl-LD-glutamate).