989 resultados para Antigens, CD27 -- immunology
Resumo:
We have analyzed the expression of T cell receptor (TcR) genes in the thymus using in situ RNA hybridizations with probes to the constant regions of the TcR alpha, beta, gamma and delta chains. Localization of transcripts revealed low TcR alpha mRNA levels in the thymus cortex and very low levels in the subcapsular region. In contrast, TcR beta message was very abundant in the cortex. TcR gamma or delta mRNA+ thymocytes showed a scattered, predominantly cortical localization. In contrast to gamma, TcR delta transcripts were abundant in the subcapsular region. Control experiments with sorted TcR alpha/beta or gamma/delta cells revealed a detection efficiency of 75%-85% for the respective TcR mRNA and data on TcR gene expression in mature, CD3+ thymocytes were consistent with previous reports. The analysis of immature, CD3- thymocyte subsets, however, revealed a virtual absence of TcR alpha transcripts and an unexpectedly high proportion of cells (14%-29%) expressing the gene for the TcR delta chain. The data are discussed in view of current models of lineage relationships in the thymus.
Resumo:
Cytokines are increasingly recognized as important components of the cellular immune responses to intracellular pathogens. In this study, we analyzed the production of TGF-beta, IL-10 and IFN-gamma by PBMC of unexposed naïve subjects and LCL patients after stimulation with live Leishmania guyanensis (L.g.). We demonstrated that IFN-gamma is produced in controls and LCL patients, IL-10 only in LCL patients and TGF-beta only in naïve subjects. Furthermore, in naive subjects, neutralization of TGF-beta induced IL-10 production. IL-10 produced in naïve subjects when TGF-beta is neutralized or in LCL patients did not modify the IFN-gamma production but inhibit reactive nitrogen species production. Analysis of the phenotype of IL-10 producing cells in naive subjects when TGF-beta is neutralized clearly showed that they are memory CD45RA- CD8+ T cells. In LCL patients, IL-10 producing cells are both CD45RA- CD4 and CD8+ T cells. The role of these IL-10 producing CD8+ T cells in the development of the diseases should be carefully evaluated.
Resumo:
CD8(+) cytotoxic T lymphocytes (CTL) can recognize and kill target cells expressing only a few cognate major histocompatibility complex (MHC) I-peptide complexes. This high sensitivity requires efficient scanning of a vast number of highly diverse MHC I-peptide complexes by the T cell receptor in the contact site of transient conjugates formed mainly by nonspecific interactions of ICAM-1 and LFA-1. Tracking of single H-2K(d) molecules loaded with fluorescent peptides on target cells and nascent conjugates with CTL showed dynamic transitions between states of free diffusion and immobility. The immobilizations were explained by association of MHC I-peptide complexes with ICAM-1 and strongly increased their local concentration in cell adhesion sites and hence their scanning by T cell receptor. In nascent immunological synapses cognate complexes became immobile, whereas noncognate ones diffused out again. Interfering with this mobility modulation-based concentration and sorting of MHC I-peptide complexes strongly impaired the sensitivity of antigen recognition by CTL, demonstrating that it constitutes a new basic aspect of antigen presentation by MHC I molecules.
Resumo:
In this study, we report the effect of fatty acids on the Thy-1 antigen mRNA decay. Low serum and synthetic medium culture conditions were used to demonstrate that fatty acids, which are important metabolites involved as second messengers in signal transduction, also influence the steady-state mRNA level. Detailed analysis demonstrated that polyunsaturated lipids attached to bovine serum albumin, such as linoleic, linolenic, and arachidonic acids, modulate gene expression specifically in the S1A T lymphoma cell line by inducing a 3-5-fold increase in the steady-state Thy-1 mRNA level, concomitant with a twofold increase in cell surface expression. A similar modulation was observed in the immature CD4-CD8- T cell precursors but not in mature thymocytes. Nuclear run-on and transfection experiments indicated that the observed Thy-1 mRNA level is post-transcriptionally regulated and that the presence of the coding region is sufficient for this adaptive response. A mechanism without a requirement for protein kinase C activation, but involving Ca2+ entry, could account for this difference in Thy-1 mRNA stability.
Resumo:
Immunodominance has been well-demonstrated in many antiviral and antibacterial systems, but much less so in the setting of immune responses against cancer. Tumor Ag-specific CD8+ T cells keep cancer cells in check via immunosurveillance and shape tumor development through immunoediting. Because most tumor Ags are self Ags, the breadth and depth of antitumor immune responses have not been well-appreciated. To design and develop antitumor vaccines, it is important to understand the immunodominance hierarchy and its underlying mechanisms, and to identify the most immunodominant tumor Ag-specific T cells. We have comprehensively analyzed spontaneous cellular immune responses of one individual and show that multiple tumor Ags are targeted by the patient's immune system, especially the "cancer-testis" tumor Ag NY-ESO-1. The pattern of anti-NY-ESO-1 T cell responses in this patient closely resembles the classical broad yet hierarchical antiviral immunity and was confirmed in a second subject.
Resumo:
MHC-peptide tetramers have become essential tools for T-cell analysis, but few MHC class II tetramers incorporating peptides from human tumor and self-antigens have been developed. Among limiting factors are the high polymorphism of class II molecules and the low binding capacity of the peptides. Here, we report the generation of molecularly defined tetramers using His-tagged peptides and isolation of folded MHC/peptide monomers by affinity purification. Using this strategy we generated tetramers of DR52b (DRB3*0202), an allele expressed by approximately half of Caucasians, incorporating an epitope from the tumor antigen NY-ESO-1. Molecularly defined tetramers avidly and stably bound to specific CD4(+) T cells with negligible background on nonspecific cells. Using molecularly defined DR52b/NY-ESO-1 tetramers, we could demonstrate that in DR52b(+) cancer patients immunized with a recombinant NY-ESO-1 vaccine, vaccine-induced tetramer-positive cells represent ex vivo in average 1:5,000 circulating CD4(+) T cells, include central and transitional memory polyfunctional populations, and do not include CD4(+)CD25(+)CD127(-) regulatory T cells. This approach may significantly accelerate the development of reliable MHC class II tetramers to monitor immune responses to tumor and self-antigens.
Resumo:
Notch proteins influence cell-fate decisions in many developing systems. Several gain-of-function studies have suggested a critical role for Notch 1 signaling in CD4-CD8 lineage commitment, maturation and survival in the thymus. However, we show here that tissue-specific inactivation of the gene encoding Notch 1 in immature (CD25+CD44-)T cell precursors does not affect subsequent thymocyte development. Neither steady-state numbers nor the rate of production of CD4+ and CD8+ mature thymocytes is perturbed in the absence of Notch 1. In addition, Notch 1-deficient thymocytes are normally sensitive to spontaneous or glucocorticoid-induced apoptosis. In contrast to earlier reports, these data formally exclude an essential role for Notch 1 in CD4-CD8 lineage commitment, maturation or survival.
Resumo:
Malignant melanoma accounts for most of the increasing mortality from skin cancer. Melanoma cells were found to express Fas (also called Apo-1 or CD95) ligand (FasL). In metastatic lesions, Fas-expressing T cell infiltrates were proximal to FasL+ tumor cells. In vitro, apoptosis of Fas-sensitive target cells occurred upon incubation with melanoma tumor cells; and in vivo, injection of FasL+ mouse melanoma cells in mice led to rapid tumor formation. In contrast, tumorigenesis was delayed in Fas-deficient lpr mutant mice in which immune effector cells cannot be killed by FasL. Thus, FasL may contribute to the immune privilege of tumors.
Resumo:
Hereditary angioedema is a disease which develops as a result of a deficiency or dysfonction of C1-inhibitor, a key regulator of the complement, coagulation and contact cascades, resulting among others in excessive release of bradykinin. This disease mortality rate is high in absence of immediate and effective treatment, in particular in presence of acute attacks of the upper respiratory tract (laryngeal edema). Until now only administration of a purified C1-inhibitor extract was effective against these symptoms. This paper aims to synthesise essentials knowledge concerning news drugs, in particular icatibant, a selective bradykinin B2- receptor antagonist whose use should be widened to the treatment of angioedema with ACE-inhibitors intolerance.
Resumo:
OBJECTIVE: To investigate the merits of vaccination against hepatitis B virus (HBV) in HIV-positive individuals with isolated antibodies to hepatitis B core antigen (anti-HBc). METHODS: HIV-positive patients with isolated anti-HBc and CD4 counts >200 cells/mm(3) received HBV vaccination. An antibody titre to hepatitis B surface antigen (anti-HBs titres) ≥10 IU/L one month post-vaccination was termed an anamnestic response; a titre <10 IU/L was termed a primary response. Patients with primary responses received a 3-dose vaccine course. Anti-HBs titres in all responders were measured 12 and 24 months post-vaccination. RESULTS: 37 patients were studied: 19 (51%) were co-infected with hepatitis C; median CD4 count was 443 cells/mm(3). 8/37 patients (22%) elicited an anamnestic response. 29/37 patients (78%) elicited a primary response. After a 3-dose vaccine course, 15/25 primary responders (60%) achieved anti-HBs titres ≥10 IU/L. HIV acquisition through injecting drug use was the only independent predictor of an anamnestic response (OR 22.9, CI 1.71-306.74, P=0.018). Median anti-HBs titres for anamnestic and primary responders were 51 IU/L (13-127) and 157 IU/L (25-650) respectively. Of all responders, 12/23 (52%) retained anti-HBs titres ≥10 IU/L at 24 months. Anti-HBs duration was not significantly different between anamnestic and primary responders. CONCLUSIONS: 23/37 HIV-positive patients (62%) with isolated anti-HBc achieved anti-HBs titres ≥10 IU/L after 1-3 vaccine doses. However, duration of this immune response was short-lived (
Resumo:
While the influence of HLA-AB and -DRB1 matching on the outcome of bone marrow transplantation (BMT) with unrelated donors is clear, the evaluation of HLA-C has been hampered by its poor serological definition. Because the low resolution of standard HLA-C typing could explain the significant number of positive cytotoxic T lymphocyte precursor frequency (CTLpf) tests found among HLA-AB-subtype, DRB1/B3/B5-subtype matched patient/donor pairs, we have identified by sequencing the incompatibilities recognized by CD8+ CTL clones obtained from such positive CTLpf tests. In most cases the target molecules were HLA-C antigens that had escaped detection by serology (e.g. Cw*1601, 1502 or 0702). Direct recognition of HLA-C by a CTL clone was demonstrated by lysis of the HLA class I-negative 721.221 cell line transfected with Cw*1601 cDNA. Because of the functional importance of Cw polymorphism, a PCR-SSO oligotyping procedure was set up allowing the resolution of 29 Cw alleles. Oligotyping of a panel of 382 individuals (including 101 patients and their 272 potential unrelated donors, 5 related donors and 4 platelet donors) allowed to determine HLA-C and HLA A-B-Cw-DRB1 allelic frequencies, as well as a number of A-Cw, B-Cw, and DRB1-Cw associations. Two new HLA-Cw alleles (Cw*02023 and Cw*0707) were identified by DNA sequencing of PCR-amplified exon 2-intron 2-exon 3 amplicons. Furthermore, we determined the degree of HLA-C compatibility in 287 matched pairs that could be formed from 73 patients and their 184 potential unrelated donors compatible for HLA-AB by serology and for HLA-DRB1/ B3/B5 by oligotyping. Cw mismatches were identified in 42.1% of these pairs, and AB-subtype oligotyping showed that 30% of these Cw-incompatible pairs were also mismatched for A or B-locus subtype. The degree of HLA-C incompatibility was strongly influenced by the linkage with B alleles and by the ABDR haplotypes. Cw alleles linked with B*4403, B*5101, B18, and B62 haplotypes were frequently mismatched. Apparently high resolution DNA typing for HLA-AB does not result in full matching at locus C. Since HLA-C polymorphism is recognized by alloreactive CTLs, such incompatibilities might be as relevant as AB-subtype mismatches in clinical transplantation.
Resumo:
Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection.
Resumo:
Susceptibility of BALB/c mice to infection with Leishmania major is associated with a T helper type 2 (Th2) response. Since interleukin-4 (IL-4) is critically required early for Th2 cell development, the kinetics of IL-4 mRNA expression was compared in susceptible and resistant mice during the first days of infection. In contrast to resistant mice, susceptible mice exhibited a peak of IL-4 mRNA in their spleens 90 min after i.v. injection of parasites and in lymph nodes 16 h after s.c. injection. IL-12 and interferon-gamma (IFN-gamma) down-regulated this early peak of IL-4 mRNA; the effect of IL-12 was IFN-gamma dependent. Treatment of resistant C57BL/6 mice with anti-IFN-gamma allowed the expression of this early IL-4 response to L. major. The increased IL-4 mRNA expression occurred in V beta 8, 7, 2- CD4+ cells in BALB/c mice and NK1.1- CD4+ cells in anti-IFN-gamma treated C57BL/6 mice. These results show that the NK1.1+ CD4+ cells, responsible for the rapid burst of IL-4 production after i.v. injection of anti-CD3, do not contribute to the early IL-4 response to L. major.
Resumo:
NK cells can kill transformed, infected and stressed cells while most normal cells are spared. NK cells are activated by various endogenous self-ligands, some of which are actually expressed by normal cells. Thus, NK cells are inherently self-reactive and consequently, potentially auto-aggressive. How these cells are prevented from attacking normal cells while ensuring reactivity to diseased cells is a major unresolved question for NK-cell biologists.
Resumo:
Superantigens of mouse mammary tumor virus induce a strong cognate interaction between T cells and B cells. In addition to amplifying the virus-infected B-cell pool, this superantigen-driven interaction leads to the differentiation of virus-specific B cells into plasma cells. Successful interaction between T cells and B cells is required for completion of the viral life cycle.